Project Manual

Bid Package 04 Underground Utilities/Steel Vol. 02

Tahlequah, Oklahoma

May 10, 2019

Tel: 479.783.2480

Fax: 479.783.4844

E-mail: breck@childersarchitect.com

Web: www.childersarchitect.com

Table of Contents Generated by MasterWorks: 5/10/2019

Division	Section Title	Pages				
PROCUREMENT AND CONTRACTING DOCUMENTS GROUP						
DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS NOT APPLICABLE						
SPECIFICATIONS GROUP						
	Facility Services Subgroup					
DIVISION 21	- FIRE SUPPRESSION					
21 1100	FACILITY FIRE-SUPPRESSION WATER-SERVICE PIPING	14				
DIVISION 22	2 - PLUMBING					
22 0517	SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING	4				
22 0553	IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT	6				
22 1116	DOMESTIC WATER PIPING	10				
22 1316	SANITARY WASTE AND VENT PIPING	10				
22 1124	FACILITY NATURAL GAS	12				
22 1319	SANITARY WASTE PIPING SPECIALTIES	8				
22 1413	FACILITY STORM DRAINAGE PIPING	10				
22 1423	STORM DRAINAGE PIPING SPECIALTIES	4				
22 1429	SUMP PUMPS	6				
DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)						
23 0517	SLEEVES AND SLEEVE SEALS FOR HVAC PIPING	4				
23 2300	REFRIGERANT PIPING	6				
DIVISION 26						
26 0526	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS	10				
26 0533	RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS	12				
26 0539	UNDERFLOOR RACEWAYS FOR ELECTRICAL SYSTEMS	8				
26 0543	UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS	14				
26 0544	SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING	4				
26 0553	IDENTIFICATION FOR ELECTRICAL SYSTEMS	10				

END OF TABLE OF CONTENTS

SECTION 21 1100

FACILITY FIRE-SUPPRESSION WATER-SERVICE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes fire-suppression water-service piping and related components outside the building and service entrance piping through floor into the building and the following:
 - 1. Pipes, fittings, and specialties.
 - 2. Fire-suppression specialty valves.
 - 3. Alarm devices.
- B. Utility-furnished products include water meters that are furnished to the site, ready for installation.
- C. Related Requirements:
 - 1. Section 21 1119 "Fire-Department Connections" for exposed-, flush-, and yard-type, firedepartment connections.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.
 - 2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.
- B. Field quality-control reports.

21 1100 - 1

1.5 QUALITY ASSURANCE

- A. Regulatory Requirements:
 - 1. Comply with requirements of utility company supplying the water. Include tapping of water mains and backflow prevention.
 - 2. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.
- B. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with FM Global's "Approval Guide" or UL's "Fire Protection Equipment Directory" for fire-service-main products.
- E. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-suppression water-service piping.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:
 - 1. Ensure that valves are dry and internally protected against rust and corrosion.
 - 2. Protect valves against damage to threaded ends and flange faces.
 - 3. Set valves in best position for handling. Set valves closed to prevent rattling.
- B. During Storage: Use precautions for valves, including fire hydrants, according to the following:
 - 1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
 - 2. Protect from weather. Store indoors and maintain temperature higher than ambient dew point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.
- C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
- D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.
- E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.
- F. Protect flanges, fittings, and specialties from moisture and dirt.
- G. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Fire-Suppression Water-Service Piping: Do not interrupt service to

17-13 OSU, College of Osteopathic Medicine at		FACILITY FIRE-
Cherokee Nation	21 1100 - 2	SUPPRESSION WATER-
Childers Architect		SERVICE PIPING
2019-05-10		

facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:

- 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of service.
- 2. Do not proceed with interruption of service without Construction Manager's written permission.

PART 2 - PRODUCTS

2.1 DUCTILE-IRON PIPE AND FITTINGS

- A. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, rounded-grooved ends.
- B. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end.
- C. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end.
- D. Grooved-End, Ductile-Iron Pipe Appurtenances:
 - 1. Grooved-End, Ductile-Iron Fittings: ASTM A 47/A 47M, malleable-iron castings or ASTM A 536, ductile-iron castings with dimensions matching pipe.
 - 2. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.
- E. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 1. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- F. Push-on-Joint, Ductile-Iron Fittings: AWWA C153, ductile-iron compact pattern.
 - 1. Gaskets: AWWA C111, rubber.
- G. Flanges: ASME B16.1, Class 125, cast iron.

2.2 PE PIPE AND FITTINGS

- A. PE, Fire-Service Pipe: FM Global approved, with minimum thickness equivalent to Class 150 and Class 200.
- B. Molded PE Fittings: FM Global approved; PE butt-fusion type, made to match PE pipe dimensions and class.

2.3 PVC PIPE AND FITTINGS

A. PVC Pipe: AWWA C900 or UL 1285, Class 150 and Class 200, with bell end with gasket, and

17-13 OSU, College of Osteopathic Medicine at		FACILITY FIRE-
Cherokee Nation	21 1100 - 3	SUPPRESSION WATER-
Childers Architect		SERVICE PIPING
2019-05-10		

with spigot end.

B. PVC Fittings: AWWA C900 or UL 1285, Class 150 and Class 200, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.

2.4 SPECIAL PIPE FITTINGS

- A. Ductile-Iron Flexible Expansion Joints:
 - 1. Manufacturers
 - a. Zurn Industries
 - b. Star Pipe Industries
 - c. Romac Industries
 - 2. Description: Compound, ductile-iron fitting with combination of flanged and mechanicaljoint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections. Assemble components for offset and expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 - 3. Pressure Rating: 250 psig (1725 kPa) minimum.
- B. Ductile-Iron Deflection Fittings:
 - 1. Manufacturers
 - a. EBAA Iron
 - 2. Description: Compound, ductile-iron coupling fitting with sleeve and one or two flexing sections for up to 15-degree deflection, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 - 3. Pressure Rating: 250 psig (1725 kPa) minimum.

2.5 ENCASEMENT FOR PIPING

- A. Standard: ASTM A 674 or AWWA C105.
- B. Material: Linear low-density PE film of 0.008-inch (0.20-mm) minimum thickness or high-density, cross-laminated PE film of 0.004-inch (0.10-mm) minimum thickness.
- C. Form: Sheet or tube.
- D. Color: Black.

2.6 JOINING MATERIALS

- A. Gaskets for Ferrous Piping and Copper-Alloy Tubing: ASME B16.21, asbestos free.
- B. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series.
- C. Bonding Adhesive for Fiberglass Piping: As recommended by fiberglass piping manufacturer.

2.7 PIPING SPECIALTIES

- A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.
- B. Tubular-Sleeve Pipe Couplings:
 - 1. Manufacturers
 - a. Viking Johnson
 - b. Romac Industries
 - c. JCM Industries
 - 2. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners, and with ends of same sizes as piping to be joined.
 - 3. Standard: AWWA C219.
 - 4. Center-Sleeve Material: Manufacturer's standard.
 - 5. Gasket Material: Natural or synthetic rubber.
 - 6. Pressure Rating: 200 psig (1380 kPa) minimum.
 - 7. Metal Component Finish: Corrosion-resistant coating or material.

2.8 CORPORATION VALVES

- A. Manufacturers
 - 1. Mueller Co.
 - 2. Master Meter, Inc.
- B. Corporation Valves: Comply with AWWA C800. Include saddle and valve compatible with tapping machine and manifold.
 - 1. Service Saddle: Copper alloy with seal and AWWA C800, threaded outlet for corporation valve.
 - 2. Corporation Valve: Bronze body and ground-key plug, with AWWA C800, threaded inlet and outlet matching service piping material.
 - 3. Manifold: Copper fitting with two to four inlets as required, with ends matching corporation valves and outlet matching service piping material.
- C. Meter Valves: Comply with AWWA C800 for high-pressure, service-line valves. Include angleor straight-through-pattern bronze body, ground-key plug or ball, and wide tee head, with inlet and outlet matching service piping material.

2.9 CURB VALVES

- A. Manufacturers
 - 1. Mueller Co.
 - 2. Master Meter, Inc.
- B. Curb Valves: Comply with AWWA C800 for high-pressure, service-line valves. Valve has bronze body, ground-key plug or ball, wide tee head, and inlet and outlet matching service piping material.
- C. Service Boxes for Curb Valves: Similar to AWWA M44 requirements for cast-iron valve boxes. Include cast-iron telescoping top section of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over curb valve and with a barrel approximately 3 inches (75 mm) in diameter.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

21 1100 - 5

- 1. Shutoff Rods: Steel; with tee-handle with one pointed end, stem of length to operate deepest buried valve, and slotted end matching curb valve.
- D. Meter Valves: Comply with AWWA C800 for high-pressure, service-line valves. Include angleor straight-through-pattern bronze body, ground-key plug or ball, and wide tee head, with inlet and outlet matching service piping material.

2.10 DETECTOR CHECK VALVES

- A. Manufacturers
 - 1. Ames Fire & Waterworks
 - 2. WATTS
 - 3. Globe Fire Sprinkler
 - 4. Kennedy Valve Company
- B. Description: Galvanized cast-iron body, bolted cover with air-bleed device for access to internal parts, and flanged ends. Include one-piece bronze disc with bronze bushings, pivot, and replaceable seat. Include threaded bypass taps in inlet and outlet for bypass meter connection. Set valve to allow minimal water flow through bypass meter when major water flow is required.
- C. Standards: UL 312 and FM Global's "Approval Guide."
- D. Pressure Rating: 175 psig (1200 kPa).
- E. Water Meter: AWWA C700, disc type, at least one-fourth size of detector check valve. Include meter, bypass piping, gate valves, check valve, and connections to detector check valve.

2.11 BACKFLOW PREVENTERS

- A. Double-Check, Detector-Assembly Backflow Preventers:
 - 1. Ames Fire & Waterworks or equivalent
 - 2. Standards: ASSE 1048 and UL's "Fire Protection Equipment Directory" listing or FM Global's "Approval Guide."
 - 3. Operation: Continuous-pressure applications.
 - 4. Pressure Loss: 5 psig (35 kPa) maximum, through middle one-third of flow range.
 - 5. Body Material: Steel with interior lining complying with AWWA C550 or that is FDA approved.
 - 6. End Connections: Flanged.
 - 7. Configuration: Designed for horizontal, straight through flow.
 - 8. Accessories:
 - a. Valves: UL 262 and FM Global's "Approval Guide" listing; OS&Y gate type with flanged ends on inlet and outlet.
 - b. Bypass: With displacement-type water meter, shutoff valves, and reducedpressure backflow preventer.
- B. Backflow Preventer Test Kits:
 - 1. Apollo Flow Controls
 - 2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with testprocedure instructions.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

21 1100 - 6

2.12 WATER METER BOXES

- A. Description: Cast-iron body and cover for disc-type water meter, with lettering "WATER METER" on cover; and with slotted, open-bottom base section of length to fit over service piping.
 - 1. Option: Base section may be cast-iron, PVC, clay, or other pipe.
- B. Description: Cast-iron body and double cover for disc-type water meter, with lettering "WATER METER" on top cover; and with separate inner cover; air space between covers; and slotted, open-bottom base section of length to fit over service piping.
- C. Description: Polymer-concrete body and cover for disc-type water meter, with lettering "WATER" on cover; and with slotted, open-bottom base section of length to fit over service piping. Include vertical and lateral design loadings of 15,000 lb minimum over 10 by 10 inches (6 800 kg minimum over 254 by 254 mm) square.

2.13 ALARM DEVICES

- A. General: UL 753 and FM Global's "Approval Guide" listing, of types and sizes to mate and match piping and equipment.
- B. Water-Flow Indicators: Vane-type water-flow detector, rated for 250-psig (1725-kPa) working pressure; designed for horizontal or vertical installation; with two single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.
- C. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position.
- D. Pressure Switches: Single pole, double throw; designed to signal increase in pressure.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with excavating, trenching, and backfilling requirements in Section 31 2000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. Water-Main Connection: Arrange with water utility company for tap of size and in location indicated in water main.
- B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.
- C. Make connections larger than NPS 2 (DN 50) with tapping machine according to the following:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

21 1100 - 7

- 1. Install tapping sleeve and tapping valve according to MSS SP-60.
- 2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
- 3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
- 4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.
- D. Comply with NFPA 24 for fire-service-main piping materials and installation.
- E. Install copper tube and fittings according to CDA's "Copper Tube Handbook."
 - 1. Install encasement for tubing according to ASTM A 674 or AWWA C105.
- F. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.
 - 1. Install encasement for piping according to ASTM A 674 or AWWA C105.
- G. Install PE pipe according to ASTM D 2774 and ASTM F 645.
- H. Install PVC, AWWA pipe according to ASTM F 645 and AWWA M23.
- I. Bury piping with depth of cover over top at least 30 inches (750 mm), with top at least 12 inches (300 mm) below level of maximum frost penetration, and according to the following:
 - 1. Under Driveways: With at least 36 inches (910 mm) of cover over top.
 - 2. Under Railroad Tracks: With at least 48 inches (1220 mm) of cover over top.
 - 3. In Loose Gravelly Soil and Rock: With at least 12 inches (300 mm) of additional cover.
- J. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.
- K. Extend fire-suppression water-service piping and connect to water-supply source and building fire-suppression water-service piping systems at locations and pipe sizes indicated.
 - 1. Terminate fire-suppression water-service piping within the building at the floor slab until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building's fire-suppression water-service piping systems when those systems are installed.
- L. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.
- M. Comply with requirements in Section 21 1313 "Wet-Pipe Sprinkler Systems," for firesuppression-water piping inside the building.
- N. Comply with requirements in Section 22 1116 "Domestic Water Piping" for potable-water piping inside the building.
- O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 21 0517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- P. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 21 0517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

21 1100 - 8

3.3 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure rating same as or higher than systems pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in tubing NPS 2 (DN 50) and smaller.
- C. Install flanges, flange adaptors, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 (DN 65) and larger end connections.
- D. Ream ends of tubes and remove burrs.
- E. Remove scale, slag, dirt, and debris from outside and inside of pipes, tubes, and fittings before assembly.
- F. Ductile-Iron Piping, Gasketed Joints for Fire-Service-Main Piping: UL 194.
- G. Ductile-Iron Piping, Grooved Joints: Cut-groove pipe. Assemble joints with grooved-end, ductileiron-piping couplings, gaskets, lubricant, and bolts.
- H. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with bolts according to ASME B31.9.
- I. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
- J. PVC Piping Gasketed Joints: Use joining materials according to AWWA C900. Construct joints with elastomeric seals and lubricant according to ASTM D 2774 or ASTM D 3139.
- K. Dissimilar Materials Piping Joints: Use adapters compatible with both piping materials, with OD, and with system working pressure.
- L. Do not use flanges or unions for underground piping.

3.4 ANCHORAGE INSTALLATION

- A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:
 - 1. Concrete thrust blocks.
 - 2. Locking mechanical joints.
 - 3. Set-screw mechanical retainer glands.
 - 4. Bolted flanged joints.
 - 5. Heat-fused joints.
 - 6. Pipe clamps and tie rods.
- B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches in fire-suppression water-service piping according to NFPA 24 and the following:
 - 1. Gasketed-Joint, Ductile-Iron, Water-Service Piping: According to AWWA C600.
 - 2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.
 - 3. Bonded-Joint Fiberglass, Water-Service Piping: According to AWWA M45.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

21 1100 - 9

C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.5 VALVE INSTALLATION

- A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.
- B. AWWA Valves Other Than Gate Valves: Comply with AWWA C600 and AWWA M44.
- C. UL-Listed or FM Global-Approved Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.
- D. UL-Listed or FM Global-Approved Valves Other Than Gate Valves: Comply with NFPA 24.
- E. MSS Valves: Install as component of connected piping system.
- F. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.
- G. Pressure-Reducing Valves: Install in vault or aboveground between shutoff valves.
- H. Support valves and piping, not direct buried, on concrete piers. Comply with requirements for concrete piers in Section 03 3000 "Cast-in-Place Concrete."

3.6 DETECTOR CHECK VALVE INSTALLATION

- A. Install in vault or aboveground.
- B. Install for proper direction of flow. Install bypass with water meter, gate valves on each side of meter, and check valve downstream from meter.
- C. Support detector check valves and piping on concrete piers. Comply with requirements for concrete piers in Section 03 3000 "Cast-in-Place Concrete."

3.7 BACKFLOW PREVENTER INSTALLATION

- A. Install backflow preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
- B. Do not install backflow preventers that have relief drain in vault or in other spaces subject to flooding.
- C. Do not install bypass piping around backflow preventers.
- D. Support NPS 2-1/2 (DN 65) and larger backflow preventers and piping on concrete piers. Comply with requirements for concrete piers in Section 03 3000 "Cast-in-Place Concrete."

21 1100 - 10

3.8 ALARM DEVICE INSTALLATION

- A. General: Comply with NFPA 24 for devices and methods of valve supervision. Underground valves with valve box do not require supervision.
- B. Supervisory Switches: Supervise valves in open position.
 - 1. Valves: Grind away portion of exposed valve stem. Bolt switch, with plunger in stem depression, to OS&Y gate-valve yoke.
 - 2. Indicator Posts: Drill and thread hole in upper-barrel section at target plate. Install switch, with toggle against target plate, on barrel of indicator post.
- C. Locking and Sealing: Secure unsupervised valves as follows:
 - 1. Valves: Install chain and padlock on open OS&Y gate valve.
 - 2. Post Indicators: Install padlock on wrench on indicator post.
- D. Pressure Switches: Drill and thread hole in exposed barrel of fire hydrant. Install switch.
- E. Water-Flow Indicators: Install in water-service piping in vault. Select indicator with saddle and vane matching pipe size. Drill hole in pipe, insert vane, and bolt saddle to pipe.
- F. Connect alarm devices to building's fire-alarm system. Wiring and fire-alarm devices are specified in Section 28 3111 "Digital, Addressable Fire-Alarm System."

3.9 CONNECTIONS

- A. Connect fire-suppression water-service piping to existing water main. Use tapping sleeve and tapping valve.
- B. Connect fire-suppression water-service piping to interior fire-suppression piping.

3.10 FIELD QUALITY CONTROL

- A. Use test procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described below.
- B. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
- C. Hydrostatic Tests: Test at not less than one-and-one-half times the working pressure for two hours.
 - Increase pressure in 50-psig (350-kPa) increments and inspect each joint between increments. Hold at test pressure for one hour; decrease to zero psig (zero kPa). Slowly increase again to test pressure and hold for one more hour. Maximum allowable leakage is 2 quarts (1.89 L) per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.
- D. Prepare test and inspection reports.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

21 1100 - 11

3.11 IDENTIFICATION

- A. Install continuous underground detectable warning tape during backfilling of trench for underground fire-suppression water-service piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 31 2000 "Earth Moving."
- B. Permanently attach equipment nameplate or marker indicating plastic fire-suppression waterservice piping or fire-suppression water-service piping with electrically insulated fittings, on main electrical meter panel. Comply with requirements for identifying devices in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.12 CLEANING

- A. Clean and disinfect fire-suppression water-service piping as follows:
 - 1. Purge new piping systems and parts of existing systems that have been altered, extended, or repaired before use.
 - 2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.
 - 3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
 - a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow it to stand for 24 hours.
 - b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow it to stand for three hours.
 - c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 - d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.
- B. Prepare reports of purging and disinfecting activities.

3.13 PIPING SCHEDULE

- A. Underground fire-suppression water-service piping NPS 6 to NPS 12 (DN 150 to DN 300) shall be one of the following:
 - 1. Grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
 - 2. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standardpattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and gasketed joints.
 - 3. Push-on-joint, ductile-iron pipe; push-on-joint, ductile-iron compact-pattern fittings; and gasketed joints.
 - 4. PVC, Class 200 pipe listed for fire-protection service; PVC fittings of same class as pipe; and gasketed joints.

B.Underslab fire-suppression water-service piping NPS 6 to NPS 12 (DN 150 to DN 300) one of17-13 OSU, College of Osteopathic Medicine atFACILITY FIRE-Cherokee Nation21 1100 - 12SUPPRESSION WATER-Childers ArchitectSERVICE PIPING2019-05-102019-05-10

the following:

- 1. Grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
- 2. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standardpattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and restrained, gasketed joints.

3.14 VALVE SCHEDULE

- A. Underground fire-suppression water-service shutoff valves NPS 3 (DN 80) and larger shall be one of the following:
 - 1. 200-psig (1380-kPa), AWWA, iron, nonrising-stem, resilient-seated gate valves.
 - 2. 250-psig (1725-kPa), AWWA, iron, nonrising-stem, resilient-seated gate valves.
 - 3. 250-psig (1725-kPa), UL-listed or FM Global-approved, iron, nonrising-stem gate valves.
- B. Standard-pressure, aboveground fire-suppression water-service shutoff valves NPS 3 (DN 80) and larger shall be one of the following:
 - 1. 200-psig (1380-kPa), AWWA, iron, OS&Y, resilient-seated gate valves.
 - 2. 250-psig (1725-kPa), AWWA, iron, OS&Y, resilient-seated gate valves.
 - 3. 250-psig (1725-kPa), UL-listed or FM Global-approved, iron, OS&Y gate valves.
 - 4. AWWA or UL-listed or FM Global-approved butterfly valves.
- C. Fire-suppression water-service check valves NPS 3 (DN 80) and larger shall be one of the following:
 - 1. AWWA or UL-listed or FM Global-approved check valves.
 - 2. UL-listed or FM Global-approved detector check valves.

END OF SECTION

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

21 1100 - 14

SECTION 22 0517

SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

22 0517 - 1

SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

- 1. <u>Advance Products & Systems, Inc</u>.
- 2. CALPICO, Inc.
- 3. <u>Metraflex Company (The)</u>.
- 4. <u>Pipeline Seal and Insulator, Inc</u>.
- 5. <u>Proco Products, Inc</u>.
- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.

17-13 OSU, College of Osteopathic Medicine at		SLEEVES AND SLEEVE
Cherokee Nation	22 0517 - 2	SEALS FOR PLUMBING
Childers Architect		PIPING
2019-05-10		

- 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
- 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 07 9200 "Joint Sealants."
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 8413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.
 - 4. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-sheet sleeves.

22 0517 - 3

END OF SECTION

SECTION 22 0553

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Stencils.
 - 5. Valve tags.
 - 6. Warning tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

22 0553 - 1

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: Aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 4. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: White.
 - 3. Background Color: Black.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Black.
- C. Background Color: Yellow.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

17-13 OSU, College of Osteopathic Medicine at		IDENTIFICATION FOR
Cherokee Nation	22 0553 - 2	PLUMBING PIPING AND
Childers Architect		EQUIPMENT
2019-05-10		

- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.4 STENCILS

- A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
 - 1. Stencil Material: Aluminum.
 - 2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
 - 3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.5 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2inch numbers.
 - 1. Tag Material: Brass, 0.032-inch, Stainless steel, 0.025-inch, Aluminum, 0.032-inch, or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

22 0553 - 3

holes for attachment hardware.

- 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size: 3 by 5-1/4 inches minimum.
 - 2. Fasteners: Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: Painting of piping is specified in Section 09 9123 "Interior Painting."
- B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels with painted, color-coded bands or rectangles, complying with ASME A13.1, on each piping system.
 - 1. Identification Paint: Use for contrasting background.
 - 2. Stencil Paint: Use for pipe marking.
- C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

22 0553 - 4

- 1. Near each valve and control device.
- 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
- 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
- 4. At access doors, manholes, and similar access points that permit view of concealed piping.
- 5. Near major equipment items and other points of origination and termination.
- 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
- 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- D. Pipe Label Color Schedule:
 - 1. Domestic Water Piping:
 - a. Background Color: Complying with ANSI 13.1.
 - b. Letter Color: Complying with ANSI 13.1.
 - 2. Sanitary Waste and Storm Drainage Piping:
 - a. Background Color: Complying with ANSI 13.1.
 - b. Letter Color: Complying with ANSI 13.1.

3.4 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Cold Water: 1-1/2 inches.
 - b. Hot Water: 1-1/2 inches.
 - 2. Valve-Tag Color:
 - a. Cold Water: Natural.
 - b. Hot Water: Natural.
 - 3. Letter Color:
 - a. Cold Water: Black.
 - b. Hot Water: Black.

3.5 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

22 0553 - 5

END OF SECTION

SECTION 22 1116

DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.
- B. Related Requirements:
 - 1. Section 22 1113 "Facility Water Distribution Piping" for water-service piping outside the building from source to the point where water-service piping enters the building.

1.3 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS

- A. System purging and disinfecting activities report.
- B. Field quality-control reports.

1.5 FIELD CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 - 1. Notify Construction Manager and Owner no fewer than two days in advance of proposed interruption of water service.
 - 2. Do not interrupt water service without Construction Manager's and Owner's written permission.

PART 2 - PRODUCTS

2.1 **PIPING MATERIALS**

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- B. Potable-water piping and components shall comply with NSF 14 and NSF 61. Plastic piping components shall be marked with "NSF-pw."

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
- B. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.
- C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
- D. Wrought-Copper, Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
- E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- F. Copper Unions:
 - 1. MSS SP-123.
 - 2. Cast-copper-alloy, hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal seating surfaces.
 - 4. Solder-joint or threaded ends.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials:
 - 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 - 2. Full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys.
- D. Flux: ASTM B 813, water flushable.
- E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for generalduty brazing unless otherwise indicated.
- F. Plastic, Pipe-Flange Gaskets, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.4 **TRANSITION FITTINGS**

- Α. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - End connections compatible with pipes to be joined. 3.
- Β. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

2.5 DIELECTRIC FITTINGS

- Α. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- В. **Dielectric Unions:**
 - 1. Subject to compliance with requirements, available manufacturers Manufacturers: offering products that may be incorporated into the Work include, but are not limited to, the following:
 - Capitol Manufacturing Company; member of the Phoenix Forge Group. a.
 - Central Plastics Company. b.
 - Hart Industries International. Inc. C.
 - Jomar International. d.
 - e. Matco-Norca.
 - f. McDonald, A. Y. Mfg. Co.
 - Watts; a division of Watts Water Technologies, Inc. g.
 - h. Wilkins; a Zurn company.
 - 2. Standard: ASSE 1079.
 - Pressure Rating: 125 psig minimum at 180 deg F. 3.
 - End Connections: Solder-joint copper alloy and threaded ferrous. 4.
- C. **Dielectric Flanges:**
 - Subject to compliance with requirements, available manufacturers 1. Manufacturers: offering products that may be incorporated into the Work include, but are not limited to, the following:
 - Capitol Manufacturing Company; member of the Phoenix Forge Group. a.
 - Central Plastics Company. b
 - Matco-Norca. C.
 - Watts; a division of Watts Water Technologies, Inc. d.
 - Wilkins; a Zurn company. е
 - 2. Standard: ASSE 1079.
 - 3. Factory-fabricated, bolted, companion-flange assembly.
 - 4. Pressure Rating: 125 psig minimum at 180 deg F.
 - 5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
- D. **Dielectric-Flange Insulating Kits:**

17-13 OSU, College of Osteopathic Medicine at **Cherokee Nation** Childers Architect 2019-05-10

DOMESTIC WATER PIPING

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Advance Products & Systems, Inc.
 - b. <u>Calpico, Inc</u>.
 - c. <u>Central Plastics Company</u>.
 - d. <u>Pipeline Seal and Insulator, Inc</u>.
- 2. Nonconducting materials for field assembly of companion flanges.
- 3. Pressure Rating: 150 psig.
- 4. Gasket: Neoprene or phenolic.
- 5. Bolt Sleeves: Phenolic or polyethylene.
- 6. Washers: Phenolic with steel backing washers.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 31 2000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 22 0519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 22 1119 "Domestic Water Piping Specialties."
- D. Install shutoff valve immediately upstream of each dielectric fitting.
- E. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 22 1119 "Domestic Water Piping Specialties."
- F. Install domestic water piping level and plumb.
- G. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- H. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

22 1116 - 4

- I. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- J. Install piping to permit valve servicing.
- K. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- Install piping free of sags and bends. L.
- Install fittings for changes in direction and branch connections. M.
- N. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- Install pressure gages on suction and discharge piping for each plumbing pump and packaged О. booster pump. Comply with requirements for pressure gages in Section 22 0519 "Meters and Gages for Plumbing Piping."
- Ρ. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 22 1123 "Domestic Water Pumps."
- Install thermometers on inlet and outlet piping from each water heater. Q. Comply with requirements for thermometers in Section 22 0519 "Meters and Gages for Plumbing Piping."
- Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements R. for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- Τ. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 0518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- Α. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- Β. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or 2. damaged.
- D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.

DOMESTIC WATER PIPING

- E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- F. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of G. both piping systems.

3.4 TRANSITION FITTING INSTALLATION

- Α. Install transition couplings at joints of dissimilar piping.
- Β. Transition Fittings in Underground Domestic Water Piping:
 - 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 - 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.
- C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition [fittings] or unions.

3.5 DIELECTRIC FITTING INSTALLATION

- Install dielectric fittings in piping at connections of dissimilar metal piping and tubing. Α.
- Β. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.
- D. Dielectric Fittings for [NPS 5] and Larger: Use dielectric flange kits.

3.6 HANGER AND SUPPORT INSTALLATION

- Comply with requirements for pipe hanger, support products, and installation in Section 22 0529 Α. "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Vertical Piping: MSS Type 8 or 42, clamps,
 - Individual, Straight, Horizontal Piping Runs: 2.
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - Longer Than 100 Feet: MSS Type 43, adjustable roller hangers. b.
 - Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls. c.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - Base of Vertical Piping: MSS Type 52, spring hangers. 4.
- Β. Support vertical piping and tubing at base and at each floor.
- C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

DOMESTIC WATER PIPING

- D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - 6. NPS 6: 10 feet with 5/8-inch rod.
 - 7. NPS 8: 10 feet with 3/4-inch rod.
- E. Install supports for vertical copper tubing every 10 feet.
- F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 - 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 IDENTIFICATION

- A. Identify system components. Comply with requirements for identification materials and installation in Section 22 0553 "Identification for Plumbing Piping and Equipment."
- B. Label pressure piping with system operating pressure.

3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:

- a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
- b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 - Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
- c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
- d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- 2. Piping Tests:
 - a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 - c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 - f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.10 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.

DOMESTIC WATER PIPING

- 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
- 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
- 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Repeat procedures if biological examination shows contamination.
 - e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Clean non-potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- C. Prepare and submit reports of purging and disinfecting activities. Include copies of watersample approvals from authorities having jurisdiction.
- D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.12 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

22 1116 - 9

- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
- D. Under-building-slab, domestic water, building-service piping, NPS 3 and smaller, shall be the following:
 - 1. Soft copper tube, ASTM B 88, Type K ASTM B 88, Type L; no joints below slab.
- E. Under-building-slab, domestic water piping, NPS 2 and smaller, shall be the following:
 - 1. Soft copper tube, ASTM B 88, Type K; no joints below slab.
- F. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.
- G. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.
- H. Aboveground domestic water piping, NPS 5 to NPS 8, shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.

3.13 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 - 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
 - 3. Hot-Water Circulation Piping, Balancing Duty: Memory-stop balancing valves.
 - 4. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.
- C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION
SECTION 23 1123

FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipes, tubes, and fittings.
 - 2. Piping specialties.
 - 3. Piping and tubing joining materials.
 - 4. Valves.
 - 5. Pressure regulators.

1.2 **PERFORMANCE REQUIREMENTS**

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 - 2. Service Regulators: 65 psig minimum unless otherwise indicated.
- B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig, and is reduced to secondary pressure of 0.5 psig or less.
- C. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

1.4 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 - 4. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 - a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.
- B. PE Pipe: ASTM D 2513, SDR 11.
 - 1. PE Fittings: ASTM D 2683, socket-fusion type or ASTM D 3261, butt-fusion type with dimensions matching PE pipe.
 - 2. PE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D 2513, SDR 11; and steel pipe complying with ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 3. Anodeless Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet.
 - b. Casing: Steel pipe complying with ASTM A 53/A 53M, Schedule 40, black steel, Type E or S, Grade B, with corrosion-protective coating covering. Vent casing aboveground.
 - c. Aboveground Portion: PE transition fitting.
 - d. Outlet shall be threaded or suitable for welded connection.
 - e. Tracer wire connection.
 - f. Ultraviolet shield.
 - g. Stake supports with factory finish to match steel pipe casing or carrier pipe.
 - 4. Transition Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet connected to steel pipe complying with ASTM A 53/A 53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.
 - b. Outlet shall be threaded or suitable for welded connection.
 - c. Bridging sleeve over mechanical coupling.
 - d. Factory-connected anode.

23 1123 - 2

FACILITY NATURAL-GAS PIPING

- e. Tracer wire connection.
- f. Ultraviolet shield.
- g. Stake supports with factory finish to match steel pipe casing or carrier pipe.

2.2 PIPING SPECIALTIES

- A. Appliance Flexible Connectors:
 - 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
 - 2. Indoor, Movable-Appliance Flexible Connectors: Comply with ANSI Z21.69.
 - 3. Outdoor, Appliance Flexible Connectors: Comply with ANSI Z21.75.
 - 4. Corrugated stainless-steel tubing with polymer coating.
 - 5. Operating-Pressure Rating: 0.5 psig.
 - 6. End Fittings: Zinc-coated steel.
 - 7. Threaded Ends: Comply with ASME B1.20.1.
 - 8. Maximum Length: 72 inches
- B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 - 1. Copper-alloy convenience outlet and matching plug connector.
 - 2. Nitrile seals.
 - 3. Hand operated with automatic shutoff when disconnected.
 - 4. For indoor or outdoor applications.
 - 5. Adjustable, retractable restraining cable.
- C. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 and smaller.
 - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig.
- D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

- A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

23 1123 - 3

FACILITY NATURAL-GAS PIPING

- 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
- 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
- 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
- C. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. Conbraco Industries, Inc.; Apollo Div.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Perfection Corporation; a subsidiary of American Meter Company.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated brass.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Separate packnut with adjustable-stem packing threaded ends.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. <u>Conbraco Industries, Inc.; Apollo Div</u>.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. <u>Perfection Corporation; a subsidiary of American Meter Company</u>.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10 FACILITY NATURAL-GAS 23 1123 - 4 PIPING

- E. Bronze Plug Valves: MSS SP-78.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Lee Brass Company.
 - b. <u>McDonald, A. Y. Mfg. Co</u>.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Plug: Bronze.
 - 4. Ends: Threaded, socket, as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Operator: Square head or lug type with tamperproof feature where indicated.
 - 6. Pressure Class: 125 psig.
 - 7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. PE Ball Valves: Comply with ASME B16.40.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Kerotest Manufacturing Corp</u>.
 - b. Lyall, R. W. & Company, Inc.
 - c. <u>Perfection Corporation; a subsidiary of American Meter Company</u>.
 - 2. Body: PE.
 - 3. Ball: PE.
 - 4. Stem: Acetal.
 - 5. Seats and Seals: Nitrile.
 - 6. Ends: Plain or fusible to match piping.
 - 7. CWP Rating: 80 psig.
 - 8. Operating Temperature: Minus 20 to plus 140 deg F.
 - 9. Operator: Nut or flat head for key operation.
 - 10. Include plastic valve extension.
 - 11. Include tamperproof locking feature for valves where indicated on Drawings.
- G. Valve Boxes:
 - 1. Cast-iron, two-section box.
 - 2. Top section with cover with "GAS" lettering.
 - 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
 - 4. Adjustable cast-iron extensions of length required for depth of bury.
 - 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.5 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

23 1123 - 5

FACILITY NATURAL-GAS PIPING

- 4. End Connections: Threaded for regulators NPS 2 and smaller.
- B. Line Pressure Regulators: Comply with ANSI Z21.80.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Actaris</u>.
 - b. <u>American Meter Company</u>.
 - c. Eclipse Combustion, Inc.
 - d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 - e. <u>Invensys</u>.
 - f. <u>Maxitrol Company</u>.
 - g. Richards Industries; Jordan Valve Div.
 - 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 - 6. Orifice: Aluminum; interchangeable.
 - 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
 - 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
 - 10. Overpressure Protection Device: Factory mounted on pressure regulator.
 - 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
- C. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Canadian Meter Company Inc</u>.
 - b. Eaton Corporation; Controls Div.
 - c. <u>Harper Wyman Co</u>.
 - d. <u>Maxitrol Company</u>.
 - e. <u>SCP, Inc</u>.
 - 2. Body and Diaphragm Case: Die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber.
 - 6. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 7. Factory-Applied Finish: Minimum three-layer polyester and polyurethane paint finish.
 - 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.6 DIELECTRIC UNIONS

A. Dielectric Unions:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

23 1123 - 6

FACILITY NATURAL-GAS PIPING

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Capitol Manufacturing Company</u>.
 - b. Central Plastics Company.
 - c. Hart Industries International, Inc.
 - d. Jomar International Ltd.
 - e. <u>Matco-Norca, Inc</u>.
 - f. McDonald, A. Y. Mfg. Co.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - h. Wilkins; a Zurn company.
- 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig minimum at 180 deg F.
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.7 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 OUTDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Section 31 2000 "Earth Moving" for excavating, trenching, and backfilling.
 - 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.
- C. Install underground, PE, natural-gas piping according to ASTM D 2774.
- D. Steel Piping with Protective Coating:
 - 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 - 3. Replace pipe having damaged PE coating with new pipe.
- E. Install fittings for changes in direction and branch connections.
- F. Install pressure gage downstream from each service regulator. Pressure gages are specified in Section 23 0519 "Meters and Gages for HVAC Piping."

23 1123 - 7

3.2 INDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.
- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Verify final equipment locations for roughing-in.
- L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- P. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- Q. Connect branch piping from top or side of horizontal piping.

23 1123 - 8

- R. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment.
- S. Do not use natural-gas piping as grounding electrode.
- T. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- U. Install pressure gage downstream from each line regulator. Pressure gages are specified in Section 22 0519 "Meters and Gages for Plumbing Piping."
- V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- X. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.3 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing or copper connector.
- B. Install underground valves with valve boxes.
- C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.
- D. Install earthquake valves aboveground outside buildings according to listing.
- E. Install anode for metallic valves in underground PE piping.

3.4 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 - 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 - 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints:
 - 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.

23 1123 - 9

FACILITY NATURAL-GAS PIPING

- 2. Bevel plain ends of steel pipe.
- 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- F. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.
- G. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hangers and supports specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."
- B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
- C. Install hangers for horizontal, corrugated stainless-steel tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1/2: Maximum span, 72 inches; minimum rod size, 3/8 inch.
 - 3. NPS 3/4 and Larger: Maximum span, 96 inches; minimum rod size, 3/8 inch.

3.6 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- C. Install piping adjacent to appliances to allow service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.7 LABELING AND IDENTIFYING

A. Comply with requirements in Section 22 0553 "Identification for Plumbing Piping and Equipment" for piping and valve identification.

23 1123 - 10

FACILITY NATURAL-GAS PIPING B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.8 FIELD QUALITY CONTROL

- A. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.
- B. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.9 PAINTING

- A. Comply with requirements in Section 09 9113 "Exterior Painting" and Section 09 9123 "Interior Painting" for painting interior and exterior natural-gas piping.
- B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MPI EXT 5.1D.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Exterior alkyd enamel matching topcoat.
 - c. Topcoat: Exterior alkyd enamel (flat).
 - d. Color: Gray.
- C. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.10 OUTDOOR PIPING SCHEDULE

- A. Underground natural-gas piping shall be one of the following:
 - 1. See piping schedule on drawings.
 - 2. PE pipe and fittings joined by heat fusion; service-line risers with tracer wire terminated in an accessible location.
 - 3. Coat pipe and fittings with protective coating for steel piping.
- B. Aboveground natural-gas piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
- C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.11 INDOOR PIPING SCHEDULE

A. See piping schedule on drawings.

3.12 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.
- B. Underground: PE valves.

3.13 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- B. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- C. Valves in branch piping for single appliance shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.

END OF SECTION

SECTION 22 1316

SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.
 - 2. Specialty pipe fittings.
- B. Related Sections:
 - 1. Section 22 1313 "Facility Sanitary Sewers" for sanitary sewerage piping and structures outside the building.

1.3 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10-foot head of water.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping and "NSF-sewer" for plastic sewer piping.

22 1316 - 1

SANITARY WASTE AND VENT PIPING

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 74, Service and Extra Heavy class(es).
- B. Gaskets: ASTM C 564, rubber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. CISPI, Hubless-Piping Couplings:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ANACO-Husky.
 - b. Dallas Specialty & Mfg. Co.
 - c. Fernco Inc.
 - d. <u>Matco-Norca, Inc</u>.
 - e. <u>MIFAB, Inc</u>.
 - f. <u>Mission Rubber Company; a division of MCP Industries, Inc</u>.
 - g. <u>Stan</u>t.
 - h. <u>Tyler Pipe</u>.
 - 2. Standards: ASTM C 1277 and CISPI 310.
 - 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- C. Heavy-Duty, Hubless-Piping Couplings:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>ANACO-Husky</u>.
 - b. <u>Clamp-All Corp</u>.
 - c. Dallas Specialty & Mfg. Co.
 - d. MIFAB, Inc.
 - e. <u>Mission Rubber Company; a division of MCP Industries, Inc.</u>
 - f. Stant.
 - g. <u>Tyler Pipe</u>.
 - 2. Standards: ASTM C 1277 and ASTM C 1540.

3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
- B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- C. Adhesive Primer: ASTM F 656.
 - 1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. Solvent Cement: ASTM D 2564.
 - 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Solvent cement shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.5 SPECIALTY PIPE FITTINGS

- A. Transition Couplings:
 - 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 - 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 - 3. Unshielded, Nonpressure Transition Couplings:
 - a. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Dallas Specialty & Mfg. Co.
 - 2) <u>Fernco Inc</u>.
 - 3) <u>Mission Rubber Company; a division of MCP Industries, Inc.</u>
 - 4) Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 - b. Standard: ASTM C 1173.
 - c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - d. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C 564, rubber.

- 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
- 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
- 4. Shielded, Nonpressure Transition Couplings:
 - a. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Cascade Waterworks Mfg. Co.
 - 2) Mission Rubber Company; a division of MCP Industries, Inc.
 - b. Standard: ASTM C 1460.
 - c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 31 2000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.

22 1316 - 4

SANITARY WASTE AND VENT PIPING

- J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- N. Install aboveground PVC piping according to ASTM D 2665.
- O. Install engineered soil and waste drainage and vent piping systems as follows:
 - 1. Combination Waste and Vent: Comply with standards of authorities having jurisdiction.
- P. Plumbing Specialties:
 - 1. Install backwater valves in sanitary waster gravity-flow piping. Comply with requirements for backwater valves specified in Section 22 1319 "Sanitary Waste Piping Specialties."
 - 2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Section 22 1319 "Sanitary Waste Piping Specialties."
 - 3. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Section 22 1319 "Sanitary Waste Piping Specialties."
- Q. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."

22 1316 - 5

T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 0518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Join hub-and-spigot, cast-iron soil piping with gasket joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
- C. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in OD's.
 - 2. In Drainage Piping: Shielded, nonpressure transition couplings.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for seismic-restraint devices specified in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Comply with requirements for pipe hanger and support devices and installation specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 3. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 4. Install individual, straight, horizontal piping runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 5. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 6. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Support horizontal piping and tubing within 12 inches of each fitting and coupling.
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

22 1316 - 6

SANITARY WASTE AND VENT PIPING

- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 - 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- G. Install supports for vertical cast-iron soil piping every 15 feet.
- H. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.
- I. Install supports for vertical PVC piping every 48 inches.
- J. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 - 5. Install horizontal backwater valves in pit with pit cover flush with floor.
 - 6. Comply with requirements for backwater valves, cleanouts, and drains specified in Section 22 1319 "Sanitary Waste Piping Specialties."
 - 7. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.
- D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

- E. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.7 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.

22 1316 - 8

3.9 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.
- D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of waterbased latex paint.

3.10 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Aboveground, soil and waste piping NPS 4 and smaller shall be the following:
 - 1. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; and coupled joints.
 - 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- C. Aboveground, soil and waste piping NPS 5 and larger shall be the following:
 - 1. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; and coupled joints.
 - 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- D. Aboveground, vent piping NPS 4 and smaller shall be the following:
 - 1. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; and coupled joints.
 - 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- E. Aboveground, vent piping NPS 5 and larger shall be the following:
 - 1. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; and coupled joints.
 - 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- F. Underground, soil, waste, and vent piping NPS 4 and smaller shall be the following:
 - 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 - 2. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- G. Underground, soil and waste piping NPS 5 and larger shall be the following:
 - 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 - 2. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; coupled joints.
 - 3. Solid-wall PVC pipe; PVC socket fittings; and solvent-cemented joints.
 - 4. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.

END OF SECTION

22 1316 - 10

SECTION 22 1319

SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cleanouts.
 - 2. Floor drains.
 - 3. Air-admittance valves.
 - 4. Miscellaneous sanitary drainage piping specialties.

1.3 **DEFINITIONS**

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. FRP: Fiberglass-reinforced plastic.
- C. HDPE: High-density polyethylene plastic.
- D. PE: Polyethylene plastic.
- E. PP: Polypropylene plastic.
- F. PVC: Polyvinyl chloride plastic.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

22 1319 - 1

SANITARY WASTE PIPING SPECIALTIES

1.7 QUALITY ASSURANCE

- A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic sanitary piping specialty components.

1.8 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Section 03 3000 "Cast-in-Place Concrete."
- B. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 CLEANOUTS

- A. Exposed Metal Cleanouts:
 - 1. ASME A112.36.2M, Cast-Iron Cleanouts:
 - a. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1) <u>Josam Company</u>.
 - 2) <u>MIFAB, Inc</u>.
 - 3) Smith, Jay R. Mfg. Co.
 - 4) <u>Tyler Pipe</u>.
 - 5) Watts Drainage Products.
 - 6) Zurn Plumbing Products Group.
 - 2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
 - 3. Size: Same as connected drainage piping
 - 4. Body Material: Hub-and-spigot, cast-iron soil pipe T-branch or hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 5. Closure: Countersunk or raised-head, brass or cast-iron plug.
 - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- B. Metal Floor Cleanouts:
 - 1. ASME A112.36.2M, Cast-Iron Cleanouts:
 - a. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1) <u>Josam Company</u>.
 - 2) <u>Smith, Jay R. Mfg. Co</u>.
 - 3) Tyler Pipe.
 - 4) Watts Drainage Products.
 - 5) Zurn Plumbing Products Group.

22 1319 - 2

- 2. Standard: ASME A112.36.2M for adjustable housing cleanout.
- 3. Size: Same as connected branch.
- 4. Type: Adjustable housing.
- 5. Body or Ferrule: Cast iron.
- 6. Closure: Brass plug with straight threads and gasket.
- 7. Adjustable Housing Material: Cast iron.
- 8. Frame and Cover Material and Finish: Nickel-bronze, copper alloy.
- 9. Frame and Cover Shape: Round.
- 10. Top Loading Classification: Heavy Duty.
- 11. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
- 12. Standard: ASME A112.3.1.
- 13. Size: Same as connected branch.
- 14. Housing: Stainless steel.
- 15. Closure: Stainless steel with seal.
- 16. Riser: Stainless-steel drainage pipe fitting to cleanout.
- C. Cast-Iron Wall Cleanouts:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. <u>Josam Company</u>; Josam Div.
 - b. MIFAB, Inc.
 - c. Smith, Jay R. Mfg. Co.
 - d. <u>Tyler Pipe;</u> Wade Div.
 - e. <u>Watts Drainage Products</u>.
 - f. <u>Zurn Plumbing Products Group</u>; Specification Drainage Operation.
 - 2. Standard: ASME A112.36.2M. Include wall access.
 - 3. Size: Same as connected drainage piping.
 - 4. Body: Hub-and-spigot, cast-iron soil pipe T-branch or hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 5. Closure: Countersunk, brass or cast-iron plug.
 - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
 - 7. Wall Access Coverplate: Round, flat, stainless-steel cover plate with screw.
 - 8. Wall Access: Square, nickel-bronze, copper-alloy, or stainless-steel wall-installation frame and cover.

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains:

- 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Josam Company; Josam Div.
 - b. MIFAB, Inc.
 - c. <u>Smith, Jay R. Mfg. Co</u>.
 - d. <u>Tyler Pipe;</u> Wade Div.
 - e. <u>Watts Drainage Products</u>.
 - f. Zurn Plumbing Products Group; Specification Drainage Operation.
- 2. Standard: ASME A112.6.3.
- 3. Pattern: Floor drain.
- 4. Body Material: Gray iron.
- 5. Top of Body and Strainer Finish: Polished bronze.
- 6. Funnel: Refer to Drawings.
- 7. Trap Material: Cast iron.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

22 1319 - 3

SANITARY WASTE PIPING SPECIALTIES

- 8. Trap Pattern: Deep-seal P-trap.
- 9. Trap Features: Trap-seal primer valve drain connection.

2.3 AIR-ADMITTANCE VALVES

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Ayrlett, LLC</u>.
 - b. Durgo, Inc.
 - c. <u>Oatey</u>.
 - d. ProSet Systems Inc.
 - e. <u>RectorSeal</u>.
 - f. <u>Studor, Inc</u>.
- 2. Standard: ASSE 1051, Type A for single fixture or Type B for branch piping.
- 3. Housing: Plastic.
- 4. Operation: Mechanical sealing diaphragm.
- 5. Size: Same as connected fixture or branch vent piping.
- B. Stack Air-Admittance Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Durgo, Inc</u>.
 - b. Oatey.
 - c. <u>Studor, Inc</u>.
 - 2. Standard: ASSE 1050 for vent stacks.
 - 3. Housing: Plastic.
 - 4. Operation: Mechanical sealing diaphragm.
 - 5. Size: Same as connected stack vent or vent stack.

2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

- A. Open Drains:
 - 1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
 - 2. Size: Same as connected waste piping.
- B. Deep-Seal Traps:
 - 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
 - 2. Size: Same as connected waste piping.
 - a. NPS 2: 4-inch- minimum water seal.
 - b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

22 1319 - 4

SANITARY WASTE PIPING SPECIALTIES

- C. Floor-Drain, Trap-Seal Primer Fittings:
 - 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 - 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.
- D. Air-Gap Fittings:
 - 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 - 2. Body: Bronze or cast iron.
 - 3. Inlet: Opening in top of body.
 - 4. Outlet: Larger than inlet.
 - 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.
- E. Expansion Joints:
 - 1. Standard: ASME A112.21.2M.
 - 2. Body: Cast iron with bronze sleeve, packing, and gland.
 - 3. End Connections: Matching connected piping.
 - 4. Size: Same as connected soil, waste, or vent piping.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- D. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 - 1. Position floor drains for easy access and maintenance.
 - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 - a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 - b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.

22 1319 - 5

- c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1inch total depression.
- 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
- 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
- E. Install fixture air-admittance valves on fixture drain piping.
- F. Install stack air-admittance valves at top of stack vent and vent stack piping.
- G. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.
- H. Assemble open drain fittings and install with top of hub 2 inches above floor.
- I. Install deep-seal traps on floor drains and other waste outlets, if indicated.
- J. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- K. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
- L. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
- M. Install vent caps on each vent pipe passing through roof.
- N. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.
- O. Install wood-blocking reinforcement for wall-mounting-type specialties.
- P. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

- A. Comply with requirements in Section 22 1316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.

3.3 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

22 1319 - 6

SANITARY WASTE PIPING SPECIALTIES B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION

22 1319 - 8

SECTION 22 1413

FACILITY STORM DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.
 - 2. Specialty pipe fittings.

1.3 **PERFORMANCE REQUIREMENTS**

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Storm Drainage Piping: 10-foot head of water.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastics Piping System Components and Related Materials," for plastic piping components. Include marking with "NSF-drain" for plastic drain piping and "NSF-sewer" for plastic sewer piping.

22 1413 - 1

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 74, Service classes.
- B. Gaskets: ASTM C 564, rubber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. CISPI, Hubless-Piping Couplings:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ANACO-Husky.
 - b. Dallas Specialty & Mfg. Co.
 - c. Fernco Inc.
 - d. <u>Matco-Norca, Inc</u>.
 - e. <u>MIFAB, Inc</u>.
 - f. <u>Mission Rubber Company; a division of MCP Industries, Inc</u>.
 - g. <u>Stant</u>.
 - h. <u>Tyler Pipe</u>.
 - 2. Standards: ASTM C 1277 and CISPI 310.
 - 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- C. Heavy-Duty, Hubless-Piping Couplings:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>ANACO-Husky</u>.
 - b. <u>Clamp-All Corp</u>.
 - c. Dallas Specialty & Mfg. Co.
 - d. MIFAB, Inc.
 - e. <u>Mission Rubber Company; a division of MCP Industries, Inc.</u>
 - f. Stant.
 - g. <u>Tyler Pipe</u>.
 - 2. Standards: ASTM C 1277 and ASTM C 1540.

3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
- B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- C. Adhesive Primer: ASTM F 656.
 - 1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Solvent Cement: ASTM D 2564.
 - 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 SPECIALTY PIPE FITTINGS

- A. Transition Couplings:
 - 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 - 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified-pipingsystem fitting.
 - 3. Unshielded, Nonpressure Transition Couplings:
 - a. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Dallas Specialty & Mfg. Co.
 - 2) <u>Fernco Inc</u>.
 - 3) <u>Mission Rubber Company; a division of MCP Industries, Inc</u>.
 - 4) Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 - b. Standard: ASTM C 1173.
 - c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - d. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
 - 4. Shielded, Nonpressure Transition Couplings:

- a. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) <u>Cascade Waterworks Mfg. Co</u>.
 - 2) <u>Mission Rubber Company; a division of MCP Industries, Inc.</u>
- b. Standard: ASTM C 1460.
- c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 31 2000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations from layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- K. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping

22 1413 - 4

upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

- L. Install storm drainage piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Storm Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Storm-Drainage Piping: 2 percent downward in direction of flow.
- M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- N. Install aboveground PVC piping according to ASTM D 2665.
- O. Install underground PVC piping according to ASTM D 2321.
- P. Install underground, ductile-iron, force-main piping according to AWWA C600. Install buried piping inside building between wall and floor penetrations and connection to storm sewer piping outside building with restrained joints. Anchor pipe to wall or floor. Install thrust-block supports at vertical and horizontal offsets.
- Q. Plumbing Specialties:
 - 1. Install backwater valves in storm drainage gravity-flow piping. Comply with requirements for backwater valves specified in Section 22 1423 "Storm Drainage Piping Specialties."
 - 2. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers in storm drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping. Comply with requirements for cleanouts specified in Section 22 1423 "Storm Drainage Piping Specialties."
 - 3. Install drains in storm drainage gravity-flow piping. Comply with requirements for drains specified in Section 22 1423 "Storm Drainage Piping Specialties."
- R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 0518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Hub-and-Spigot, Cast-Iron Soil Piping Gasketed Joints: Join according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hubless, Cast-Iron Soil Piping Coupled Joints: Join according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

22 1413 - 5

- C. Plastic, Nonpressure-Piping, Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in OD's.
 - 2. In Drainage Piping: Shielded, nonpressure transition couplings.

3.5 VALVE INSTALLATION

- A. General valve installation requirements are specified in Section 22 0523 "General-Duty Valves for Plumbing Piping."
- B. Backwater Valves: Install backwater valves in piping subject to backflow.
 - 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type unless otherwise indicated.
 - 2. Install backwater valves in accessible locations.
 - 3. Comply with requirements for backwater valves specified in Section 22 1423 "Storm Drainage Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger and support devices and installation specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
 - 3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 - 5. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 6. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 8. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

22 1413 - 6
- E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 - 6. Spacing for 10-foot pipe lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- F. Install supports for vertical cast-iron soil piping every 15 feet.
- G. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.
- H. Install supports for vertical PVC piping every 48 inches.
- I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect storm drainage piping to roof drains and storm drainage specialties.
 - 1. Install test tees (wall cleanouts) in conductors near floor, and floor cleanouts with cover flush with floor.
 - 2. Install horizontal backwater valves in pit with pit cover flush with floor.
 - 3. Comply with requirements for backwater valves cleanouts and drains specified in Section 22 1423 "Storm Drainage Piping Specialties."
- D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- E. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

22 1413 - 7

3.8 IDENTIFICATION

A. Identify exposed storm drainage piping. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Test Procedure: Test storm drainage piping on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts until completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 5. Prepare reports for tests and required corrective action.

3.10 CLEANING

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.11 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Aboveground storm drainage piping NPS 6 and smaller shall be the following:

22 1413 - 8

FACILITY STORM DRAINAGE PIPING

- 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
- 2. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; and coupled joints.
- 3. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
- 4. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- C. Aboveground, storm drainage piping NPS 8 and larger shall be the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; and coupled joints.
 - 3. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 4. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- D. Underground storm drainage piping NPS 6 and smaller shall be the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; and coupled joints.
 - 3. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 4. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- E. Underground, storm drainage piping NPS 8 and larger shall be the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; and coupled joints.
 - 3. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 4. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.

END OF SECTION

22 1413 - 10

FACILITY STORM DRAINAGE PIPING

SECTION 22 1423

STORM DRAINAGE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Roof drains.
 - 2. Miscellaneous storm drainage piping specialties.
 - 3. Through-penetration firestop assemblies.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 METAL ROOF DRAINS

- A. Cast-Iron, Large-Sump, General-Purpose Roof Drains:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Josam Company.
 - b. Marathon Roofing Products.
 - c. <u>MIFAB, Inc</u>.
 - d. Smith, Jay R. Mfg. Co.
 - e. <u>Tyler Pipe</u>.
 - f. <u>Watts Water Technologies, Inc</u>.
 - g. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 2. Standard: ASME A112.6.4, for general-purpose roof drains.
 - 3. Body Material: Cast iron.
 - 4. Dimension of Body: Nominal 14-inch diameter.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

22 1423 - 1

STORM DRAINAGE PIPING SPECIALTIES

- 5. Combination Flashing Ring and Gravel Stop: Required.
- 6. Outlet: Bottom.
- 7. Extension Collars: Required.
- 8. Underdeck Clamp: Required.
- 9. Sump Receiver Plate: Required.
- 10. Dome Material: Cast iron.
- 11. Water Dam: 2 inches high.

2.2 MISCELLANEOUS STORM DRAINAGE PIPING SPECIALTIES

- A. Downspout Adaptors:
 - 1. Description: Manufactured, gray-iron casting, for attaching to horizontal-outlet, parapet roof drain and to exterior, sheet metal downspout.
 - 2. Size: Inlet size to match parapet drain outlet.
- B. Downspout Boots:
 - 1. Description: Manufactured, ASTM A 48/A 48M, gray-iron casting, with strap or ears for attaching to building; NPS 4 outlet; and shop-applied bituminous coating.
 - 2. Size: Inlet size to match downspout and NPS 4 outlet.
- C. Conductor Nozzles:
 - 1. Description: Bronze body with threaded inlet and bronze wall flange with mounting holes.
 - 2. Size: Same as connected conductor.

2.3 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

- A. Through-Penetration Firestop Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ProSet Systems Inc.
 - 2. Standard: ASTM E 814, for through-penetration firestop assemblies.
 - 3. Certification and Listing: Intertek Testing Service NA for through-penetration firestop assemblies.
 - 4. Size: Same as connected pipe.
 - 5. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 - 6. Stack Fitting: ASTM A 48/A 48M, gray-iron, hubless-pattern, wye branch with neoprene O-ring at base and gray-iron plug in thermal-release harness. Include PVC protective cap for plug.
 - 7. Special Coating: Corrosion resistant on interior of fittings.

22 1423 - 2

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install roof drains at low points of roof areas according to roof membrane manufacturer's written installation instructions.
 - 1. Install flashing collar or flange of roof drain to prevent leakage between drain and adjoining roofing. Maintain integrity of waterproof membranes where penetrated.
 - 2. Install expansion joints, if indicated, in roof drain outlets.
 - 3. Position roof drains for easy access and maintenance.
- B. Install downspout adapters on outlet of back-outlet parapet roof drains and connect to sheet metal downspouts.
- C. Install downspout boots at grade with top 12 inches above grade. Secure to building wall.
- D. Install conductor nozzles at exposed bottom of conductors where they spill onto grade.
- E. Install cleanouts in aboveground piping and building drain piping according to the following instructions unless otherwise indicated:
 - 1. Use cleanouts the same size as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate cleanouts at each change in direction of piping greater than 45 degrees.
 - 3. Locate cleanouts at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate cleanouts at base of each vertical soil and waste stack.
- F. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- G. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- H. Install test tees in vertical conductors and near floor.
- I. Install wall cleanouts in vertical conductors. Install access door in wall if indicated.
- J. Install trench drains at low points of surface areas to be drained. Set grates of drains flush with finished surface unless otherwise indicated.
- K. Assemble channel drainage system components according to manufacturer's written instructions. Install on support devices so that top will be flush with adjacent surface.
- L. Install through-penetration firestop assemblies in plastic conductors at concrete floor penetrations.
- M. Install sleeve flashing device with each conductor passing through floors with waterproof membrane.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 1413 "Facility Storm Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

3.3 **PROTECTION**

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION

SECTION 22 1429

SUMP PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Submersible sump pumps.
 - 2. Sump-pump basins and basin covers.
 - 3. Packaged drainage-pump units.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Wiring Diagrams: For power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pumps and controls, to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Retain shipping flange protective covers and protective coatings during storage.
- B. Protect bearings and couplings against damage.
- C. Comply with pump manufacturer's written rigging instructions for handling.

22 1429 - 1

PART 2 - PRODUCTS

2.1 SUBMERSIBLE SUMP PUMPS

- A. Submersible, Fixed-Position, Single-Seal Sump Pumps:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. <u>ABS Pumps Inc.</u>
 - b. Barnes; Crane Pumps & Systems.
 - c. Bell & Gossett Domestic Pump; ITT Corporation.
 - d. <u>Goulds Pumps; ITT Corporation</u>.
 - e. <u>Grundfos Pumps Corp</u>.
 - f. Little Giant Pump Co.
 - g. Pentair Pump Group; Hydromatic Pumps.
 - h. Pentair Pump Group; Myers.
 - i. Weil Pump Company, Inc.
 - j. Zoeller Company.
 - 2. Description: Factory-assembled and -tested sump-pump unit.
 - 3. Pump Type: Submersible, end-suction, single-stage, close-coupled, overhung-impeller, centrifugal sump pump as defined in HI 1.1-1.2 and HI 1.3.
 - 4. Pump Casing: Cast iron, with strainer inlet, legs that elevate pump to permit flow into impeller, and vertical discharge for piping connection.
 - 5. Impeller: Statically and dynamically balanced, ASTM A 48/A 48M, Class No. 25 A cast iron and ASTM B 584, cast bronze, semiopen design for clear wastewater handling, and keyed and secured to shaft.
 - 6. Pump and Motor Shaft: Stainless steel or steel, with factory-sealed, grease-lubricated ball bearings.
 - 7. Seal: Mechanical.
 - 8. Motor: Hermetically sealed, capacitor-start type; with built-in overload protection; lifting eye or lug; and three-conductor, waterproof power cable of length required and with grounding plug and cable-sealing assembly for connection at pump.
 - 9. Controls:
 - a. Enclosure: NEMA 250, Type 4X.
 - b. Switch Type: Pedestal-mounted float switch with float rods and rod buttons.
 - c. Automatic Alternator: Start pumps on successive cycles and start multiple pumps if one cannot handle load.
 - d. Float Guides: Pipe or other restraint for floats and rods in basins of depth greater than 60 inches.
 - e. High-Water Alarm: Cover-mounted, compression-probe alarm, with electric bell; 120-V ac, with transformer and contacts for remote alarm bell.
 - 10. Control-Interface Features:
 - a. Remote Alarm Contacts: For remote alarm interface.
 - b. Building Automation System Interface: Auxiliary contacts in pump controls for interface to building automation system and capable of providing the following:
 - 1) On-off status of pump.
 - 2) Alarm status.

2.2 SUMP-PUMP BASINS AND BASIN COVERS

- A. Basins: Factory-fabricated, watertight, cylindrical, basin sump with top flange and sidewall openings for pipe connections.
 - 1. Material: Fiberglass or polyethylene.
 - 2. Reinforcement: Mounting plates for pumps, fittings, and accessories.
 - 3. Anchor Flange: Same material as or compatible with basin sump, cast in or attached to sump, in location and of size required to anchor basin in concrete slab.
- B. Basin Covers: Fabricate metal cover with openings having gaskets, seals, and bushings; for access to pumps, pump shafts, control rods, discharge piping, vent connections, and power cables.
 - 1. Reinforcement: Steel or cast iron, capable of supporting foot traffic for basins installed in foot-traffic areas.

2.3 PACKAGED DRAINAGE-PUMP UNITS

- A. Packaged Submersible Drainage-Pump Units:
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. <u>ABS Pumps Inc</u>.
 - b. Bell & Gossett Domestic Pump; ITT Corporation.
 - c. <u>Goulds Pumps; ITT Corporation</u>.
 - d. <u>Grundfos Pumps Corp</u>.
 - e. <u>Little Giant Pump Co</u>.
 - f. Pentair Pump Group; Hydromatic Pumps.
 - g. Pentair Pump Group; Myers.
 - h. Weil Pump Company, Inc.
 - i. <u>Zoeller Company</u>.
 - 2. Description: Factory-assembled and -tested, automatic-operation, basin-mounted, sumppump unit.
 - 3. Pump Type: Submersible, end-suction, single-stage, close-coupled, overhung-impeller centrifugal pump as defined in HI 1.1-1.2 and HI 1.3.
 - 4. Casing: Metal.
 - 5. Impeller: Brass or thermoplastic.
 - 6. Pump Seal: Mechanical.
 - 7. Motor: Hermetically sealed, capacitor-start type, with built-in overload protection.
 - 8. Power Cord: Three-conductor, waterproof cable of length required but not less than 72 inches, with grounding plug and cable-sealing assembly for connection at pump.
 - 9. Pump Discharge Piping: Factory or field fabricated, galvanized, ASTM A 53/A 53M, Schedule 40, steel pipe with ASME B16.4, Class 125, gray iron threaded fittings.
 - 10. Control: Motor-mounted float switch.
 - 11. Basin: Plastic.

2.4 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 22 0513 "Common Motor Requirements for Plumbing Equipment."

- 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- B. Motors for submersible pumps shall be hermetically sealed.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation and filling are specified in Section 31 2000 "Earth Moving."

3.2 EXAMINATION

A. Examine roughing-in for plumbing piping to verify actual locations of storm drainage piping connections before sump pump installation.

3.3 INSTALLATION

A. Pump Installation Standards: Comply with HI 1.4 for installation of sump pumps.

3.4 CONNECTIONS

- A. Comply with requirements for piping specified in Section 22 1413 "Facility Storm Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Pumps and controls will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Perform startup service.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10 SUMP PUMPS

1. Complete installation and startup checks according to manufacturer's written instructions.

3.7 ADJUSTING

- A. Adjust pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust control set points.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain controls and pumps.

END OF SECTION

SECTION 23 0517

SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Grout.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. <u>Advance Products & Systems, Inc</u>.
 - 2. CALPICO, Inc.
 - 3. <u>Metraflex Company (The)</u>.
 - 4. <u>Pipeline Seal and Insulator, Inc</u>.
 - 5. <u>Proco Products, Inc</u>.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

23 0517 - 1

- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 07 9200 "Joint Sealants."

23 0517 - 2

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 8413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.
 - 4. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-sheet sleeves.

END OF SECTION

23 0517 - 3

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

23 0517 - 4

SECTION 23 2300

REFRIGERANT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.2 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-134a:
 - 1. Suction Lines for Air-Conditioning Applications: 115 psig.
 - 2. Suction Lines for Heat-Pump Applications: 225 psig.
 - 3. Hot-Gas and Liquid Lines: 225 psig.
- B. Line Test Pressure for Refrigerant R-407C:
 - 1. Suction Lines for Air-Conditioning Applications: 230 psig.
 - 2. Suction Lines for Heat-Pump Applications: 380 psig.
 - 3. Hot-Gas and Liquid Lines: 380 psig.
- C. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig.
 - 2. Suction Lines for Heat-Pump Applications: 535 psig.
 - 3. Hot-Gas and Liquid Lines: 535 psig.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop based on manufacturer's test data.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 - 1. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

- A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.7 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 280, Type ACR.
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.
- D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
- E. Brazing Filler Metals: AWS A5.8.
- F. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
 - 4. Pressure Rating: Factory test at minimum 500 psig.
 - 5. Maximum Operating Temperature: 250 deg F.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Hot-Gas and Liquid Lines, and Suction Lines: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

23 2300 - 2

- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- K. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 08 3113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- L. Install refrigerant piping in protective conduit where installed belowground.
- M. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- N. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- O. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- P. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- Q. Identify refrigerant piping and valves according to Section 23 0553 "Identification for HVAC Piping and Equipment."
- R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 0517 "Sleeves and Sleeve Seals for HVAC Piping."

23 2300 - 3

- S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 23 0517 "Sleeves and Sleeve Seals for HVAC Piping."
- T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 0518 "Escutcheons for HVAC Piping."

3.3 PIPE JOINT CONSTRUCTION

- A. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- B. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Section 23 0529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 - 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 - 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
 - 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 7. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 8. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 - 9. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.
- D. Support multifloor vertical runs at least at each floor.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping and specialties. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.6 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 - 4. Charge system with a new filter-dryer core in charging line.

3.7 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION

23 2300 - 5

23 2300 - 6

REFRIGERANT PIPING

SECTION 26 0526

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes grounding and bonding systems and equipment.
- B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 - 1. Underground distribution grounding.
 - 2. Ground bonding common with lightning protection system.
 - 3. Foundation steel electrodes.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans showing dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1. Test wells.
 - 2. Ground rods.
 - 3. Ground rings.
 - 4. Grounding arrangements and connections for separately derived systems.
- B. Qualification Data: For testing agency and testing agency's field supervisor.
- C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0526 - 1

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

- a. Plans showing as-built, dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1) Test wells.
 - 2) Ground rods.
 - 3) Ground rings.
 - 4) Grounding arrangements and connections for separately derived systems.
- b. Instructions for periodic testing and inspection of grounding features at test wells, ground rings, and grounding connections for separately derived systems based on NETA MTS and NFPA 70B.
 - 1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 - 2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches (unless noted otherwise on drawings) in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0526 - 2

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS Lexan or PVC, impulse tested at 5000 V.

- 1. Grounding bus bar shall be installed in each dedicated data equipment room/closet.
- 2. Install No. 6 AWG conductor connecting each grounding bus bar to the main service grounding distribution system.

2.3 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
- D. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.
- E. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.
- F. Cable-to-Cable Connectors: Compression type, copper or copper alloy.
- G. Conduit Hubs: Mechanical type, terminal with threaded hub.
- H. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- I. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- J. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.
- K. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.
- L. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.
- M. Straps: Solid copper, copper lugs. Rated for 600 A.
- N. Tower Ground Clamps: Mechanical type, copper or copper alloy.
- O. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.
- P. Water Pipe Clamps:
 - 1. Mechanical type, two pieces with zinc-plated bolts.
 - a. Material: Die-cast zinc alloy.
 - b. Listed for direct burial.
 - 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

26 0526 - 3

2.4 GROUNDING ELECTRODES

- A. Ground Rods: Copper-clad steel; 3/4 inch diameter by 10 feet in length.
- B. Chemical-Enhanced Grounding Electrodes: Copper tube, straight or L-shaped, charged with nonhazardous electrolytic chemical salts.
 - 1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches long.
 - 2. Backfill Material: Electrode manufacturer's recommended material.
- C. Ground Plates: 1/4 inch thick, hot-dip galvanized.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 - 1. Bury at least 24 inches below grade.
 - 2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.
- C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
- D. Grounding Bus: Install in electrical equipment rooms, in rooms housing service and low voltage data equipment and elsewhere as indicated.
 - 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.
- E. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0526 - 4

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Comply with IEEE C2 grounding requirements.
- B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.
- C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.
- D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.5 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.
 - 4. Single-phase motor and appliance branch circuits.
 - 5. Three-phase motor and appliance branch circuits.
 - 6. Flexible raceway runs.
 - 7. Armored and metal-clad cable runs.
 - 8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.
- C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0526 - 5

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

- D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
- F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
- G. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.
- H. Metallic Fences: Comply with requirements of IEEE C2.
 - 1. Grounding Conductor: Bare copper, not less than No. 8 AWG.
 - 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
 - 3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.6 FENCE GROUNDING

- A. Fence Grounding: Install at maximum intervals of 1500 feet except as follows:
 - 1. Fences within 100 Feet of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet.
 - a. Gates and Other Fence Openings: Ground fence on each side of opening.
 - 1) Bond metal gates to gate posts.
 - 2) Bond across openings, with and without gates, except at openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches below finished grade.
- B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet on each side of crossing.
- C. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.
- D. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at grounding location.
- E. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.
- F. Bonding to Lightning-Protection System: If fence terminates at lightning-protected building or

17-13 OSU, College of Osteopathic Medicine atGROUNDING ANDCherokee Nation26 0526 - 6BONDING FORChilders ArchitectELECTRICAL SYSTEMS2019-05-102019-05-10

structure, ground the fence and bond the fence grounding conductor to lightning-protection down conductor or lightning-protection grounding conductor, complying with NFPA 780.

3.7 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
- C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 - 2. Use exothermic welds for all below-grade connections.
 - 3. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
- D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 26 0543 "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches deep, with cover.
 - 1. Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.
- E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
- F. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.

26 0526 - 7

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

- 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- G. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.
- H. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.
- I. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each steel column, extending around the perimeter of building.
 - 1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.
 - 2. Bury ground ring not less than 24 inches from building's foundation.
- J. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.
 - 1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
 - 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.
- K. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.
 - 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 4. Make aluminum-to-galvanized-steel connections with tin-plated copper jumpers and mechanical clamps.
 - 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:

2019-05-10

- 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
- 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
- 3. Test completed grounding system at each location where a maximum ground-resistance

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect

26 0526 - 8

level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.

- a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
- b. Perform tests by fall-of-potential method according to IEEE 81.
- 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- D. Grounding system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.
- F. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 - 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 - 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).
 - 5. Substations and Pad-Mounted Equipment: 5 ohms.
 - 6. Manhole Grounds: 10 ohms.
- G. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

SECTION 26 0533

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings.
 - 2. Nonmetallic conduits and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Nonmetal wireways and auxiliary gutters.
 - 5. Surface raceways.
 - 6. Boxes, enclosures, and cabinets.
 - 7. Handholes and boxes for exterior underground cabling.

1.3 **DEFINITIONS**

- A. ARC: Aluminum rigid conduit.
- B. GRC: Galvanized rigid steel conduit.
- C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 - 1. Structural members in paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0533 - 1

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

- B. Qualification Data: For professional engineer.
- C. Seismic Qualification Data: Certificates, for enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 - 4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.
- D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

- A. Metal Conduit:
 - 1. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. GRC: Comply with ANSI C80.1 and UL 6.
 - 3. ARC: Comply with ANSI C80.5 and UL 6A.
 - 4. IMC: Comply with ANSI C80.6 and UL 1242.
 - 5. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - a. Comply with NEMA RN 1.
 - b. Coating Thickness: 0.040 inch, minimum.
 - 6. EMT: Comply with ANSI C80.3 and UL 797.
 - 7. FMC: Comply with UL 1; zinc-coated steel or aluminum.
 - 8. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- B. Metal Fittings:
 - 1. Comply with NEMA FB 1 and UL 514B.
 - 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. Fittings, General: Listed and labeled for type of conduit, location, and use.
 - 4. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
 - 5. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: compression.
 - 6. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 - 7. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

C. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities 17-13 OSU, College of Osteopathic Medicine at Cherokee Nation 26 0533 - 2 FOR ELECTRICAL Childers Architect SYSTEMS 2019-05-10
having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

- Α. Nonmetallic Conduit:
 - Listing and Labeling: Nonmetallic conduit shall be listed and labeled as defined in 1. NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Fiberglass:
 - Comply with NEMA TC 14. a.
 - b. Comply with UL 2515 for aboveground raceways.
 - c. Comply with UL 2420 for belowground raceways.
 - 3. ENT: Comply with NEMA TC 13 and UL 1653.
 - RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise 4. indicated.
 - 5. LFNC: Comply with UL 1660.
 - Rigid HDPE: Comply with UL 651A. 6.
 - Continuous HDPE: Comply with UL 651A. 7.
 - 8. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D 3485.
 - 9. RTRC: Comply with UL 2515A and NEMA TC 14.
- Β. Nonmetallic Fittings:
 - Fittings, General: Listed and labeled for type of conduit, location, and use. 1.
 - Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and 2. material.
 - a. Fittings for LFNC: Comply with UL 514B.
 - 3. Solvents and Adhesives: As recommended by conduit manufacturer.

METAL WIREWAYS AND AUXILIARY GUTTERS 2.3

- Α. Description: Sheet metal, complying with UL 870 and NEMA 250, (enclosure suitable to environment) unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- Β. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- C. Wireway Covers: Hinged, Flanged-and-gasketed type unless otherwise indicated.
- Finish: Manufacturer's standard enamel finish. D.

2.4 NONMETALLIC WIREWAYS AND AUXILIARY GUTTERS

- A. Listing and Labeling: Nonmetallic wireways and auxiliary gutters shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Description: Fiberglass polyester, extruded and fabricated to required size and shape, without holes or knockouts. Cover shall be gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections shall be flanged and have stainless-steel screws and oil-resistant gaskets.
- C. Description: PVC, extruded and fabricated to required size and shape, and having snap-on cover, mechanically coupled connections, and plastic fasteners.
- D. Fittings and Accessories: Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.
- E. Solvents and Adhesives: As recommended by conduit manufacturer.

2.5 SURFACE RACEWAYS

- A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect unless otherwise indicated.
- C. Surface Nonmetallic Raceways: not allowed unless noted otherwise.

2.6 BOXES, ENCLOSURES, AND CABINETS

- A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.
- D. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
- E. Metal Floor Boxes: refer to drawings.
- F. Nonmetallic Floor Boxes: refer to drawings
- G. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- H. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 90 lb.

17-13 OSU, College of Osteopathic Medicine atRACEWAYS AND BOXESCherokee Nation26 0533 - 4FOR ELECTRICALChilders ArchitectSYSTEMS2019-05-10SYSTEMS

- 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- I. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- J. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum or galvanized, cast iron (suitable to environment) with gasketed cover.
- K. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- L. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
- M. Gangable boxes are allowed.
- N. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, NEMA enclosure type suitable to environment with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Fiberglass.
 - 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
- O. Cabinets:
 - 1. NEMA 250, NEMA enclosure suitable to environment, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.
 - 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.7 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. General Requirements for Handholes and Boxes:
 - 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 - 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 - 1. Standard: Comply with SCTE 77.
 - 2. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
 - 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 - 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 5. Cover Legend: Molded lettering, "ELECTRIC.".
 - 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts

17-13 OSU, College of Osteopathic Medicine atRACEWAYS AND BOXESCherokee Nation26 0533 - 5FOR ELECTRICALChilders ArchitectSYSTEMS2019-05-10SYSTEMS

for secure, fixed installation in enclosure wall.

- 7. Handholes 12 Inches Wide by 24 Inches Long and Larger: Have inserts for cable racks and pulling-in irons installed before concrete is poured.
- C. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with frame and covers of reinforced concrete.
 - 1. Standard: Comply with SCTE 77.
 - 2. Color of Frame and Cover: Gray.
 - 3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
 - 4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 - 5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 6. Cover Legend: Molded lettering, "ELECTRIC.".
 - 7. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
 - 8. Handholes 12 Inches Wide by 24 Inches Long and Larger: Have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.8 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

- A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC.
 - 2. Concealed Conduit, Aboveground: EMT.
 - 3. Underground Conduit: RNC, Type EPC-80-PVC, direct buried.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 4.
 - 6. Feeders to Variable Speed Drive: Metallic (EMT or GRC)
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT unless noted otherwise.
 - 3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:

a. Loading dock. 17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0533 - 6

- b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
- c. Mechanical rooms.
- d. Gymnasiums.
- 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
- 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
- 6. Damp or Wet Locations: GRC.
- 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.
- 8. Feeders to Variable Speed Drive: Metallic (EMT or GRC)
- C. Minimum Raceway Size: 1/2-inch trade size. 3/4-inch minimum for school and healthcare facilities.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 - 3. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10.
 - 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.
- F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
- G. Install surface raceways only where indicated on Drawings.
- H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation.
- D. Comply with requirements in Section 26 0529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

17-13 OSU, College of Osteopathic Medicine at		RACEWAYS AND BOXES
Cherokee Nation	26 0533 - 7	FOR ELECTRICAL
Childers Architect		SYSTEMS
2019-05-10		

- F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- H. Support conduit within 12 inches of enclosures to which attached.
- I. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-footintervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of 1 inch of concrete cover in all directions.
 - 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 - 5. Change from ENT to GRC before rising above floor. Elbows shall be GRC. Continue GRC until conduit passes through the slab prior to transition back to ENT.
 - 6. Provide coated GRC for all bends greater than 30 degrees, including the 90-degree elbows below grade and the entire vertical risers for transitions from below to above grade or above-slab."
- J. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
- M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- N. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- O. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- P. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- Q. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
 College of Octoonsthip Medicine at PACEWAYS AND POYES.

17-13 OSU, College of Osteopathic Medicine at	J	RACEWAYS AND BOXES
Cherokee Nation	26 0533 - 8	FOR ELECTRICAL
Childers Architect		SYSTEMS
2019-05-10		

- R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- S. Surface Raceways:
 - 1. Install surface raceway with a minimum 2-inchradius control at bend points.
 - 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- T. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- U. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - 3. Where otherwise required by NFPA 70.
- V. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- W. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 - c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 - d. Attics: 135 deg F temperature change.
 - 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
 - 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 - 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0533 - 9

- X. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- Y. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- Z. Surface mount boxes at window mullions at locations indicated on drawings. Use of MC cable is acceptable. Conceal raceways and conductors within mullion cavity. Splices within the mullions are not allowed.
- AA. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- BB. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- CC. Locate boxes so that cover or plate will not span different building finishes.
- DD. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- EE. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- FF. Set metal floor boxes level and flush with finished floor surface.
- GG. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

- A. Direct-Buried Conduit:
 - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 31 2000 "Earth Moving" for pipe less than 6 inches in nominal diameter.
 - 2. Install backfill as specified in Section 31 2000 "Earth Moving."
 - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 31 2000 "Earth Moving."
 - 4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 - 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0533 - 10

- a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
- b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
- 6. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits but a minimum of 6 inches below grade. Align planks along centerline of conduit.
- 7. Underground Warning Tape: Comply with requirements in Section 26 0553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.
- D. Install handholes with bottom below frost line, below grade.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.
- F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 0544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 07 8413 "Penetration Firestopping."

3.7 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0533 - 11

- 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
- 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION

SECTION 26 0539

UNDERFLOOR RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Flat-top, single- or multichannel, underfloor raceways.
 - 2. Flush, flat-top underfloor raceways.
 - 3. Cellular metal underfloor raceways.
 - 4. Trench-type underfloor raceways.
 - 5. Electrical connection components for precast cellular concrete floor decks.
 - 6. Electrical connection components for electrified cellular steel floor decks.
 - 7. Supports, raceway fittings, and hardware.
 - 8. Junction boxes.
 - 9. Service fittings.
- B. Related Requirements:
 - 1. Section 03 4100 "Precast Structural Concrete" for precast concrete units used as cellular concrete floor raceways.
 - 2. Section 05 3100 "Steel Decking" for rough-in of underfloor duct distribution system.

1.3 DEFINITIONS

A. Activation: Nomenclature used by some manufacturers for a service fitting.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include finishes, construction details, material descriptions, dimensions, and profiles for underfloor raceway components, fittings, and accessories.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For underfloor raceways.
 - 1. Include floor plans, elevations, sections, and details.
 - 2. Detail fabrication and assembly of underfloor raceways.

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation26 0539 - 1Childers Architect2019-05-10

UNDERFLOOR RACEWAYS FOR ELECTRICAL SYSTEMS

- a. Identify components and accessories, such as expansion-joint assemblies, straight raceway lengths, preset and afterset inserts, and service fittings,
- b. Detail preparation and installation methods and instructions.
- Provide dimensions locating raceway header and distribution elements. Include C. spacing between preset inserts and between preset inserts and ends of duct runs. walls, columns, junction boxes, and header duct connections.
- Provide raceway fill charts for each duct size provided for each conductor size the d. duct is identified to accept. Provide separate charts for power and communication conductors and cables.
- Show connections between raceway elements and relationships between e. components and adjacent structural and architectural elements, including slab reinforcement, floor finish work, permanent partitions, expansion joints, and pretensioning or post-tensioning components.
- f. Indicate height of preset inserts, junction boxes, and raceways coordinated with depth of concrete slab and floor fill.
- Indicate thickening of slabs where required for adequate encasement of raceway g. components.
- h. Document coordination of exposed components with floor-covering materials to ensure that fittings and trim are suitable for indicated floor-covering material.
- i. Revise locations from those indicated in the Contract Documents, as required to suit field conditions and to ensure a functioning layout. Identify proposed deviations from the Contract Documents.
- Show details of connections and terminations of underfloor raceways at j. panelboards and communication terminal equipment in equipment rooms, wire closets, and similar spaces.
- Identify those cells of cellular floor deck that are to be connected and fitted for the k. following underfloor distribution:
 - 1) Power.
 - 2) Voice.
 - 3) Data.
 - 4) Signal.
 - 5) Communications.
- C. Samples: For each underfloor raceway product, in specified finish, including the following:
 - 1. Service fittings and flush and recessed outlet and junction-box covers.
 - 2. A section of each service raceway configuration, with specified preset insert and service fitting installed.
 - 3. A junction box of each size and type for use with underfloor raceway.
 - A section of each header raceway configuration, complete with provisions for connection 4. with service raceway.
 - 5. A section of trench-type raceway, complete with cover and required trim.
 - 6. A junction box of each size and type for use with trench-type raceway, complete with cover and trim.

1.5 **INFORMATIONAL SUBMITTALS**

Α. Field quality-control reports.

1.6 **CLOSEOUT SUBMITTALS**

Operation and Maintenance Data: For underfloor raceways, to include in emergency, operation, Α. 17 12 OSLI College of Octoonathia Medicin

		······;
17-13 OSU, College of Osteopathic Medicine at		UNDERFLOOR
Cherokee Nation	26 0539 - 2	RACEWAYS FOR
Childers Architect		ELECTRICAL SYSTEMS
2019-05-10		

and maintenance manuals.

- 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - a. Manufacturer's written instructions for locating preset inserts and for installing afterset inserts.
- B. Project Record Documents: Submit final as-built Drawings, indicating dimensioned locations for all ducts, junction boxes, and preset inserts. Typical spacing designation shall be accepted only for preset insert spacing along a continuous length of duct.

1.7 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Comply with UL 884.
- C. Comply with NFPA 70.
- D. Mockup: Install a mockup for evaluation of surface preparation and duct installation techniques and workmanship.
 - 1. Mockup area shall be designated by Architect.
 - 2. Do not proceed with remaining work until workmanship, appearance, and performance are approved.
 - 3. Repair or reinstall mockup area as required to produce acceptable work.
 - 4. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 5. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Jacks, Receptacles, and Fittings:
 - 1. Comply with Section 26 2726 "Wiring Devices" for power outlets, faceplates, and connectors.

2.2 TRENCH-TYPE UNDERFLOOR RACEWAYS

- A. Description: Trench-type raceways used as header or feeder raceways to serve service raceways.
- B. Source Limitations: Obtain underfloor raceway components for each system through single source from single manufacturer.
- C. Trench: Steel, shop or factory welded and fabricated to indicated sizes. Include the following features:
 - 1. Slab Depth Adjustment: Minimum of minus 1/8 inch to plus 5/8 inch before and during concrete placement.
 - 2. Cover Supports: Height adjustable, with leveling screws to rigidly support cover assembly.
 - 3. Screed Strip: Extruded aluminum along both edges at proper elevation without requiring shim material.
 - 4. Trim Strip: Select to accommodate floor finish material.
 - 5. Partitions: Arranged to separate channels and isolate wiring of different systems.
 - 6. Grommeted openings in active floor cells or service raceways.
 - 7. Manufacturer's standard corrosion-resistant finish, applied after fabrication.
- D. Cover Plates: Removable, steel plates, 1/4 inch thick, each weighing 60 lb or less with full gasket attached to side units. Fabricate intermediate supports to limit unsupported spans to 15 inches or less. Fabricate covers with appropriate depth recess to receive indicated floor finish.

2.3 SUPPORTS, RACEWAY FITTINGS, AND HARDWARE

- A. Source Limitations: Obtain underfloor raceway supports, fittings, and hardware components for each system through single source from single manufacturer.
- B. Supports, fittings, and hardware shall be compatible with raceway and outlet system and shall be listed for use with raceway systems and components delivered.
- C. Supports: Adjustable for height and arranged to maintain alignment and spacing of raceways during concrete placement. Include hold-down straps.
- D. Raceway Fittings: Couplings, expansion-joint sleeves, cross-under offsets, vertical and horizontal elbows, grounding screws, adapters, end caps, and other fittings suitable for use with basic components to form a complete installation.

2.4 JUNCTION BOXES

- A. Description: Raceway manufacturer's standard enclosure for indicated type, quantity, arrangement, and configuration of raceways at each raceway junction, intersection, and access location. Include the following accessories and features:
 - 1. Mounting brackets.
 - 2. Escutcheons and holders to accommodate surrounding floor covering.
 - 3. Means for leveling and height adjustment more than 3/8 inch before and after concrete is placed.
 - 4. Boxes shall withstand a minimum 300-lb concentrated load. Internal supports shall be

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0539 - 4

UNDERFLOOR RACEWAYS FOR ELECTRICAL SYSTEMS provided as needed to meet this requirement.

- 5. All boxes shall provide 2-inch-minimum bend radius for data and communication cables.
- 6. Raceway Openings: For underfloor raceways and conduits arranged to accommodate raceway layout.
- 7. Covers shall have appropriate depth recess to receive specific floor finish material.
- 8. Partitions to separate wiring of different systems.

2.5 SERVICE FITTINGS/ACTIVATIONS

- A. Source Limitations: Obtain underfloor raceway service fittings and hardware for each system through single source from single manufacturer.
- B. Exposed Parts Finish: To be approved by Architect.
- C. Flush, Single-System Service Fitting for Rectangular Inserts: Include mounting, hinged cover, and trim to support and provide access to connector, jack, or receptacle devices mounted flush with floor within insert.
 - 1. Connector, Jack, and Receptacle Devices: Modular type.
 - 2. Power Receptacle Rating: 20 A, 120 V unless otherwise indicated.
 - 3. Recess-Mounted Service Fitting: Modular fittings compatible with preset inserts. Include device plates for indicated systems and provisions for receptacles, jacks, and connectors. Include hinged flush covers with recessed depth to match thickness of floor finish material. Provide for internally mounted receptacle- and communication-jack and connector assemblies.
 - a. Duplex receptacle.
 - b. Duplex data jacks.
 - c. Double duplex receptacles.
 - d. Duplex receptacle and duplex data jacks.
 - e. Fiber-optic cable connector.
- D. Surface-Mounted Service Fitting: Modular pedestal type, with locking attachment matched to insert floor opening.
 - 1. Power-outlet, double-faced, surface-mounted unit for duplex receptacle on both sides.
 - 2. Power-outlet, single-faced, surface-mounted unit for duplex receptacle on one side.
 - 3. Communication-outlet, double-faced, surface-mounted unit.
 - a. Include bushed openings on both sides; 1-inch minimum diameter; insulated with nonconducting material.
 - b. Include provisions for modular dual fiber-optic connector assembly on both sides.
 - c. Include provisions for modular dual jack-connector assembly, rated for Category 6 on both sides.
 - 4. Communication-outlet, single-faced, surface-mounted unit with bushed opening on one side; 1-inch minimum diameter; insulated with nonconducting material.
 - 5. Combination surface-mounted unit for duplex receptacle on one side and with communication cable connection provision on opposite side.
 - a. Communication Side: Include bushed opening; 1-inch minimum diameter; insulated with nonconducting material.
 - b. Communication Side: Include provisions for modular dual jack-connector assembly, rated for Category 6.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0539 - 5

UNDERFLOOR RACEWAYS FOR ELECTRICAL SYSTEMS

- 6. Flush-Mounted Service Fittings: Modular fittings compatible with preset inserts and shall include covers, provisions for receptacles jacks and connector assemblies and wiring extensions to wall-mounted outlets, and associated device plates for indicated systems. Include flush covers, recessed to suit floor finish material.
- 7. Indicate types and locations of devices on Drawings.
 - a. Duplex convenience receptacle.
 - b. Duplex data outlets.
 - c. Double duplex convenience receptacles.
 - d. Duplex convenience receptacle and duplex data outlets.
 - e. Double duplex data outlets.
 - f. Duplex fiber-optic communication connector.
 - g. Wiring-Extension Service Fittings: Arrangement of brackets and mountings to support and provide access to wiring or cabling of a cell, and to connect the cable or raceway that extends the system to an individual wall outlet. Provide for connection of RMC for power extensions, and ENT optical fiber/communication cable raceway for communication system extensions.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install raceways aligned and leveled and, unless otherwise indicated, parallel or perpendicular to floor supports.
- B. Maintain arrangement of conductor services throughout the raceway system.
- C. Install a concrete mud slab for support of cellular metal, flush duct, or trench duct raceway. Construct mud slab with wire mesh in the top 1 inch of concrete.
- D. Install a vapor barrier between the cellular metal raceway and a substrate in contact with earth.
- E. Arrange supports to attain proper elevation, alignment, and spacing of raceways. Fasten supports securely at ends and at intervals not to exceed 60 inches, to prevent movement during concrete pour.
- F. Level raceway components with finished slab and make adjustments in raceway component elevation to accommodate indicated floor finishes.
- G. Junction Boxes: Install tops level and flush with finished floor. Install blank closure plates or plugs to close unused junction-box openings. Grout boxes in place to prevent movement during construction. Place top covers in inverted position during construction to prevent damage to surface of cover. Reinstall covers in proper position prior to final acceptance of the Work.

26 0539 - 6

- H. Install preset inserts per manufacturer's instructions.
- I. Adjust supports to maintain a 1/8- to 3/8-inch finished concrete cover over preset inserts.
- J. Remove burrs, sharp edges, dents, and mechanical defects.
- K. Cap or plug boxes, insert- and service-fitting openings, and open ends of raceways.
- L. Install expansion fittings with suitable bonding jumper where raceways cross building expansion joints.
- M. Bond underfloor raceway components to create a continuous bonding path.
- N. Seal raceways, cells, junction boxes, and inserts to prevent water, concrete, or foreign matter from entering raceways before and during pouring slab or placing fill. Tape joints or seal with compound, as recommended in writing by underfloor raceway manufacturer.
- O. Install a marker at the center of the last insert of each cell and channel of each straight run of metal underfloor service raceway to locate the insert and identify the system.
 - 1. Install markers at last inserts on both sides of permanent walls and at first inserts adjacent to each junction box.
 - 2. Install markers flush at screed line before pouring slab or placing fill. Extend marker with grommeted screw when floor covering is placed. Do not extend through carpet.
 - 3. Use slotted-head screw to identify electrical power; use Phillips-head screw to identify conventional communications.
 - 4. Use another distinctive screw head to identify third system, such as special-purpose wiring.
- P. Protect underfloor raceway system from damage. Do not use the installed duct system as working platforms or walkways. Do not allow equipment or heavy traffic over duct during construction period, without first installing ramps over the duct. Ramps shall be designed so that imposed loads are not transferred to the duct. Components of the system that are damaged during construction shall be replaced.
- Q. Install concrete surrounding underfloor raceways according to Section 03 3000 "Cast-in-Place Concrete."
- R. Afterset Inserts: Cut, hole saw, and drill slab and raceways to allow for installation at locations indicated on plans.
- S. Wiring shall comply with Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables" and NFPA 70 requirements for wet locations.
 - 1. Install wiring from outlet insert toward junction boxes, then to termination at panel.
 - 2. Splices: All splices and taps shall be made in junction boxes. No splices or taps shall be made in raceways or outlet inserts.

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

26 0539 - 7

UNDERFLOOR RACEWAYS FOR ELECTRICAL SYSTEMS

- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Perform visual inspection of interior of each section of trench raceway to verify absence of dirt, dust, construction debris, and moisture. Replace damaged and malfunctioning components.
 - 2. Prior to and after concrete pour, perform point-to-point tests of ground continuity and resistance of ground path between the most remote accessible fitting on each branch of each underfloor raceway system and the main electrical distribution grounding system.
 - a. Determine cause and perform correction of any point-to-point resistance value that exceeds 0.05 ohms.
 - b. Comply with NETA Acceptance Testing Specification about safety, suitability of test equipment, test instrument calibration, and test report and records.
- C. Prepare test and inspection reports.

3.4 CLEANING

A. Clean and swab out underfloor raceways, inserts, and junction boxes after finish has been applied to floor slab, and remove foreign material, dirt, and moisture. Leave interiors clean and dry.

END OF SECTION

SECTION 26 0543

UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings, including GRC and PVC-coated steel conduit.
 - 2. Rigid nonmetallic duct.
 - 3. Flexible nonmetallic duct.
 - 4. Duct accessories.
 - 5. Precast concrete handholes.
 - 6. Polymer concrete handholes and boxes with polymer concrete cover.
 - 7. Fiberglass handholes and boxes with polymer concrete cover.
 - 8. Fiberglass handholes and boxes.
 - 9. High-density plastic boxes.
 - 10. Utility structure accessories.

1.3 DEFINITIONS

- A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.
- B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.
- C. Duct Bank:
 - 1. Two or more ducts installed in parallel, with or without additional casing materials.
 - 2. Multiple duct banks.
- D. GRC: Galvanized rigid (steel) conduit.
- E. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include duct-bank materials, including spacers and miscellaneous components.

17-13 OSU, College of Osteopathic Medicine at		UNDERGROUND DUCTS
Cherokee Nation	26 0543 - 1	AND RACEWAYS FOR
Childers Architect		ELECTRICAL SYSTEMS
2019-05-10		

- 2. Include duct, conduits, and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
- 3. Include accessories for handholes and boxes.
- 4. Include underground-line warning tape.
- 5. Include warning planks.
- B. Shop Drawings:
 - 1. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 - a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 - b. Include duct entry provisions, including locations and duct sizes.
 - c. Include cover design.
 - d. Include grounding details.
 - e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.5 INFORMATIONAL SUBMITTALS

- A. Duct and Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures.
 - 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
 - 2. Drawings shall be signed and sealed by a qualified professional engineer.
- B. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.
- C. Product Certificates: For concrete and steel used in precast concrete handholes, as required by ASTM C 858.
- D. Source quality-control reports.
- E. Field quality-control reports.

1.6 MAINTENANCE MATERIALS SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
- B. Furnish cable-support stanchions, arms, insulators, and associated fasteners in quantities equal to 5 percent of quantity of each item installed.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.

26 0543 - 2

1.8 FIELD CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Construction Manager and owner no fewer than five days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Construction Manager's and Owner's written permission.
- B. Ground Water: Assume ground-water level is at grade level unless a lower water table is noted on Drawings.
- C. Ground Water: Assume ground-water level is 36 inches (900 mm) below ground surface unless a higher water table is noted on Drawings.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND FITTINGS

- A. GRC: Comply with ANSI C80.1 and UL 6.
- B. Coated Steel Conduit: PVC-coated GRC.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch (1 mm), minimum.
- C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 RIGID NONMETALLIC DUCT

- A. Underground Plastic Utilities Duct: Type EPC-80-PVC and Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.
- B. Underground Plastic Utilities Duct: Type DB-60 PVC and Type DB-120 PVC RNC, complying with NEMA TC 6 & 8 and ASTM F 512 for direct burial, with matching fittings complying with NEMA TC 9 by same manufacturer as duct.
- C. Underground Plastic Utilities Duct: Type EB-20 PVC RNC, complying with NEMA TC 6 & 8, ASTM F 512, and UL 651, with matching fittings complying with NEMA TC 9 by same manufacturer as duct.
- D. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

26 0543 - 3

2.3 FLEXIBLE NONMETALLIC DUCTS

- A. HDPE Duct: Type EPEC-40 HDPE and Type EPEC-80 HDPE, complying with NEMA TC 7 and UL 651A.
 - 1. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.4 DUCT ACCESSORIES

- A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.
- B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 26 0553 "Identification for Electrical Systems."
- C. Concrete Warning Planks: Nominal 12 by 24 by 3 inches (300 by 600 by 75 mm) in size, manufactured from 6000-psi (41-MPa) concrete.
 - 1. Color: Red dye added to concrete during batching.
 - 2. Mark each plank with "ELECTRIC" in 2-inch- (50-mm-) high, 3/8-inch- (10-mm-) deep letters.

2.5 PRECAST CONCRETE HANDHOLES AND BOXES

- A. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.
- B. Comply with ASTM C 858 for design and manufacturing processes.
- C. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
- D. Frame and Cover: Weatherproof steel frame, with steel cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
- E. Frame and Cover: Weatherproof steel frame, with hinged steel access door assembly with tamper-resistant, captive, cover-securing bolts.
 - 1. Cover Hinges: Concealed, with hold-open ratchet assembly.
 - 2. Cover Handle: Recessed.
- F. Frame and Cover: Weatherproof aluminum frame with hinged aluminum access door assembly with tamper-resistant, captive, cover-securing bolts.
 - 1. Cover Hinges: Concealed, with hold-open ratchet assembly.
 - 2. Cover Handle: Recessed.
- G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation 2 Childers Architect 2019-05-10

26 0543 - 4

- H. Cover Legend: Molded lettering, "ELECTRIC"
- I. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
- J. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
 - 1. Extension shall provide increased depth of [12 inches (300 mm)].
 - 2. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.
- K. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.
- L. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 - 1. Type and size shall match fittings to duct to be terminated.
 - 2. Fittings shall align with elevations of approaching duct and be located near interior corners of handholes to facilitate racking of cable.
- M. Handholes [12 inches wide by 24 inches long (300 mm wide by 600 mm long)] and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.6 POLYMER CONCRETE HANDHOLES AND BOXES WITH POLYMER CONCRETE COVER

- A. Description: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray.
- D. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "ELECTRIC".
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes [12 inches wide by 24 inches long (300 mm wide by 600 mm long)] and larger shall have factory-installed inserts for cable racks and pulling-in irons.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0543 - 5

2.7 FIBERGLASS HANDHOLES AND BOXES WITH POLYMER CONCRETE FRAME AND COVER

- A. Description: Sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray.
- D. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "ELECTRIC".
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes [12 inches wide by 24 inches long (300 mm wide by 600 mm long)] and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.8 FIBERGLASS HANDHOLES AND BOXES

- A. Description: Molded of fiberglass-reinforced polyester resin, with covers made of hot-dip galvanized-steel diamond plate.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray.
- D. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "ELECTRIC".
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure,

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0543 - 6

fixed installation in enclosure wall.

- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes [12 inches wide by 24 inches long (300 mm wide by 600 mm long)] and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.9 HIGH-DENSITY PLASTIC BOXES

- Description: Injection molded of HDPE or copolymer-polypropylene. Cover shall be made of hot-Α. dip galvanized-steel diamond plate.
- Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Β. Application" Article.
- C. Color: Gray.
- Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise D. indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50. F.
- G. Cover Legend: Molded lettering, "ELECTRIC".
- Η. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, Ι. fixed installation in enclosure wall.
- Handholes [12 inches wide by 24 inches long (300 mm wide by 600 mm long)] and larger shall J. have factory-installed inserts for cable racks and pulling-in irons.

2.10 UTILITY STRUCTURE ACCESSORIES

Α. Accessories for Utility Structures: Utility equipment and accessory items used for utility structure access and utility support, listed and labeled for intended use and application.

2.11 SOURCE QUALITY CONTROL

- Test and inspect precast concrete utility structures according to ASTM C 1037. Α.
- Β. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.

Tests of materials shall be performed by an independent testing agency. 1.

17-13 OSU, College of Osteopathic Medicine at		UNDERGROUND DUCTS
Cherokee Nation	26 0543 - 7	AND RACEWAYS FOR
Childers Architect		ELECTRICAL SYSTEMS
2019-05-10		

- 2. Strength tests of complete boxes and covers shall be by an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
- 3. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate layout and installation of duct, duct bank, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.
- B. Coordinate elevations of duct and duct-bank entrances into handholes and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to handholes, and as approved by Architect.
- C. Clear and grub vegetation to be removed, and protect vegetation to remain.

3.2 UNDERGROUND DUCT APPLICATION

- A. Duct for Electrical Branch Circuits: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- B. Bored Underground Duct: Type EPEC-40-HDPE unless otherwise indicated.
- C. Underground Ducts Crossing Paved Paths, Walk, Driveways, and Roadways: Type EPC-40 PVC RNC, encased in reinforced concrete.
- D. Stub-ups: Concrete-encased GRC.

3.3 UNDERGROUND ENCLOSURE APPLICATION

- A. Handholes and Boxes for 600 V and Less:
 - 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-20 structural load rating.
 - Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Fiberglass-reinforced polyester resin, SCTE 77, Tier 15 structural load rating.
 - 3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Heavy-duty fiberglass units with polymer concrete frame and cover, SCTE 77, Tier 8 structural load rating.
 - 4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf (13 345-N) vertical loading.
 - 5. Cover design load shall not exceed the design load of the handhole or box.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0543 - 8

3.4 EARTHWORK

- A. Excavation and Backfill: Comply with Section 31 2000 "Earth Moving" and/or Structural Engineer requirements.
- B. Restoration: Replace area immediately after backfilling is completed or after construction vehicle traffic in immediate area is complete.
- C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
- D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching.
- E. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures.

3.5 DUCT AND DUCT-BANK INSTALLATION

- A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.
- B. Install duct according to NEMA TCB 2.
- C. Slope: Pitch duct a minimum slope of 1:300 down toward handholes and away from buildings and equipment.
- D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of [48 inches (1200 mm)] [12.5 feet (4 m)] [25 feet (7.5 m)], both horizontally and vertically, at other locations unless otherwise indicated.
 - 1. Duct shall have maximum of two 90 degree bends or the total of all bends shall be no more 180 degrees between pull points.
- E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.
- F. Installation Adjacent to High-Temperature Steam Lines: Where duct is installed parallel to underground steam lines, perform calculations showing the duct will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.
- G. End Bell Entrances to Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches (250 mm) o.c. for 5-inch (125-mm) duct, and vary proportionately for other duct sizes.
 - 1. Begin change from regular spacing to end-bell spacing 10 feet (3 m) from the end bell, without reducing duct slope and without forming a trap in the line.

17-13 OSU, College of Osteopathic Medicine at		UNDERGROUND DUCTS
Cherokee Nation	26 0543 - 9	AND RACEWAYS FOR
Childers Architect		ELECTRICAL SYSTEMS
2019-05-10		

- 2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to handhole. Install an expansion fitting near the center of all straight line direct-buried duct with calculated expansion of more than 3/4 inch (19 mm).
- 3. Grout end bells into structure walls from both sides to provide watertight entrances.
- H. Terminator Entrances to Concrete and Polymer Concrete Handholes: Use manufactured, castin-place duct terminators, with entrances into structure spaced approximately 6 inches (150 mm) o.c. for 4-inch (100-mm) duct, and vary proportionately for other duct sizes.
 - 1. Begin change from regular spacing to terminator spacing 10 feet (3 m) from the terminator, without reducing duct line slope and without forming a trap in the line.
 - 2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to handhole. Install an expansion fitting near the center of all straight line duct with calculated expansion of more than 3/4 inch (19 mm).
- I. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet (3 m) outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install GRC penetrations of building walls as specified in Section 26 0544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
- J. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.
- K. Pulling Cord: Install 200-lbf- (1000-N-) test nylon cord in empty ducts.
- L. Concrete-Encased Ducts and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Prepare trench bottoms as specified in Section 31 2000 "Earth Moving" for pipes less than 6 inches (150 mm) in nominal diameter.
 - 2. Width: Excavate trench 12 inches (300 mm) wider than duct on each side.
 - 3. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
 - 4. Depth: Install so top of duct envelope is at least 24 inches (600 mm) below finished grade in areas not subject to deliberate traffic, and at least 30 inches (750 mm) below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.
 - 5. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
 - 6. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 - 7. Minimum Space between Duct: 3 inches (75 mm) between edge of duct and exterior envelope wall, 2 inches (50 mm) between ducts for like services, and 4 inches (100 mm) between power and communications ducts.
 - 8. Elbows: Use manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct unless otherwise indicated. Extend encasement throughout length of elbow.
 - 9. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0543 - 10

- a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
- b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of base. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches (100 mm) above finished floor and minimum 3 inches (75 mm) from conduit side to edge of slab.
- c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of wall. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches (100 mm) above finished floor and no less than 3 inches (75 mm)from conduit side to edge of slab.
- 10. Reinforcement: Reinforce concrete-encased duct where crossing disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
- 11. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
- 12. Concrete Cover: Install a minimum of 3 inches (75 mm) of concrete cover between edge of duct to exterior envelope wall, 2 inches (50 mm) between duct of like services, and 4 inches (100 mm) between power and communications ducts.
- 13. Pouring Concrete: Place concrete carefully during pours to prevent voids under and between duct and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow around duct and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-installation application.
- M. Direct-Buried Duct and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Comply with requirements in Section 31 2000 "Earth Moving" for preparation of trench bottoms for pipes less than 6 inches (150 mm) in nominal diameter.
 - 2. Width: Excavate trench 12 inches (300 mm) wider than duct on each side.
 - 3. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
 - 4. Depth: Install top of duct at least 36 inches (900 mm) below finished grade unless otherwise indicated.
 - 5. Set elevation of bottom of duct bank below frost line.
 - 6. Support ducts on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
 - 7. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to ducts to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 - 8. Install duct with a minimum of 3 inches (75 mm) between ducts for like services and 6 inches (150 mm) between power and communications duct.
 - 9. Elbows: Install manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct direction unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 - 10. Install manufactured GRC elbows for stub-ups, at building entrances, and at changes of

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0543 - 11

direction in duct.

- a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
- b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of base. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches (100 mm) above]finished floor and minimum 3 inches (75 mm)from conduit side to edge of slab.
- c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of wall. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches (100 mm) above finished floor and no less than 3 inches (75 mm) from conduit side to edge of slab.
- 11. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, backfill duct and tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with compaction. Comply with requirements in Section 31 2000 "Earth Moving" and/or Structural Engineer requirements for installation of backfill materials.
- N. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried duct, placing them 24 inches (600 mm) o.c. Align planks along the width and along the centerline of duct or duct bank. Provide an additional plank for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional planks 12 inches (300 mm) apart, horizontally.
- O. Underground-Line Warning Tape: Bury conducting underground line specified in Section 26 0553 "Identification for Electrical Systems" no less than 12 inches (300 mm) above all concrete-encased duct and duct banks and approximately 12 inches (300 mm) below grade. Align tape parallel to and within 3 inches (75 mm) of centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.

3.6 INSTALLATION OF CONCRETE HANDHOLES AND BOXES

- A. Precast Concrete Handhole Installation:
 - 1. Comply with ASTM C 891 unless otherwise indicated.
 - 2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
 - 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch (25-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

B. Elevations:

- 1. Install handholes with bottom below frost line.
- 2. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0543 - 12

Set covers of other handholes 1 inch (25 mm) above finished grade.

- 3. Where indicated, cast handhole cover frame integrally with handhole structure.
- C. Waterproofing: Apply waterproofing to exterior surfaces of handholes after concrete has cured at least three days. After duct has been connected and grouted, and before backfilling, waterproof joints and connections, and touch up abrasions and scars.
- D. Dampproofing: Apply dampproofing to exterior surfaces of handholes after concrete has cured at least three days. After ducts are connected and grouted, and before backfilling, dampproof joints and connections, and touch up abrasions and scars.
- E. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.
- F. Field-Installed Bolting Anchors in Concrete Handholes: Do not drill deeper than 2 inches (50 mm) for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

3.7 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of duct, and seal joint between box and extension as recommended by manufacturer.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
- D. Install handholes and boxes with bottom below frost line.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.
- F. Field cut openings for duct according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.
- G. For enclosures installed in asphalt paving or other type of paving and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.
 - 1. Concrete: 3000 psi (20 kPa), 28-day strength.
 - 2. Dimensions:

26 0543 - 13

3.8 GROUNDING

A. Ground underground ducts and utility structures according to Section 26 0526 "Grounding and Bonding for Electrical Systems."

3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
 - 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch- (300-mm-) long mandrel equal to duct size minus 1/4 inch (6 mm). If obstructions are indicated, remove obstructions and retest.
 - 3. Test handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 26 0526 "Grounding and Bonding for Electrical Systems."
- B. Correct deficiencies and retest as specified above to demonstrate compliance.
- C. Prepare test and inspection reports.

3.10 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

END OF SECTION

SECTION 26 0544

SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 - 2. Sleeve-seal systems.
 - 3. Sleeve-seal fittings.
 - 4. Grout.
 - 5. Silicone sealants.
- B. Related Requirements:
 - 1. Section 07 8413 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Wall Sleeves:
 - 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
 - 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0544 - 1

SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

- C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
- E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- F. Sleeves for Rectangular Openings:
 - 1. Material: Galvanized sheet steel.
 - 2. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 - b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0544 - 2

SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

- 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 07 9200 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.
- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boottype flashing units applied in coordination with roofing work.
- F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0544 - 3

to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION
SECTION 26 0553

IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
 - 2. Labels.
 - 3. Bands and tubes.
 - 4. Tapes and stencils.
 - 5. Tags.
 - 6. Signs.
 - 7. Cable ties.
 - 8. Paint for identification.
 - 9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
- B. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.
- C. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1 and IEEE C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.

26 0553 - 1

- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Comply with NFPA 70E and Section 26 0574 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.
- F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 - 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 3. Colors for 240-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - 4. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.
 - 5. Color for Neutral: White.
 - 6. Color for Equipment Grounds: Green.
 - 7. Colors for Isolated Grounds: Green with white stripe.
- C. Raceways and Cables Carrying Circuits at More Than 600 V:
 - 1. Black letters on an orange field.
 - 2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING."
- D. Warning Label Colors:
 - 1. Identify system voltage with black letters on an orange background.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 2019-05-10

26 0553 - 2

- E. Warning labels and signs shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."
- F. Equipment Identification Labels:
 - 1. Black letters on a white field.

2.3 LABELS

- A. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 - 1. Minimum Nominal Size:
 - a. 1-1/2 by 6 inchesfor raceway and conductors.
 - b. 3-1/2 by 5 inchesfor equipment.
 - c. As required by authorities having jurisdiction.

2.4 TAPES AND STENCILS

- A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
- B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.
- C. Tape and Stencil: 4-inch-wide black stripes on 10-inch centers placed diagonally over orange background and is 12 inches wide. Stop stripes at legends.
- D. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.
- E. Underground-Line Warning Tape:
 - 1. Tape:
 - a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 - 2. Color and Printing:
 - a. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, ANSI Z535.4, and ANSI Z535.5.
 - b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".

26 0553 - 3

c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

2.5 TAGS

- A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.
- B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.

1.

2.6 SIGNS

- A. Baked-Enamel Signs:
 - 1. Preprinted aluminum signs, high-intensity reflective, punched or drilled for fasteners, with colors, legend, and size required for application.
 - 2. 1/4-inch grommets in corners for mounting.
 - 3. Nominal Size: 7 by 10 inches.
- B. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Engraved legend.
 - 2. Thickness:
 - a. For signs up to 20 sq. in., minimum 1/16 inch thick.
 - b. For signs larger than 20 sq. in., 1/8 inch thick.
 - c. Engraved legend with black letters on white face.
 - d. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.7 CABLE TIES

- A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black.
- C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.

26 0553 - 4

- 1. Minimum Width: 3/16 inch.
- 2. Tensile Strength at 73 Deg F according to ASTM D 638: 7000 psi.
- 3. UL 94 Flame Rating: 94V-0.
- 4. Temperature Range: Minus 50 to plus 284 deg F.
- 5. Color: Black.

2.8 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.
- G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 - 1. Secure tight to surface of conductor, cable, or raceway.
- H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.

26 0553 - 5

- 1. Secure tight to surface of conductor, cable, or raceway.
- I. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
- J. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.
- K. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
- L. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
 - 3. "UPS."
- M. Vinyl Wraparound Labels:
 - 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 - 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
- N. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.
- O. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.
- P. Self-Adhesive Labels:
 - 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
- Q. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.
- R. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.
- S. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.
- T. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 - 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.

26 0553 - 6

- U. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.
- V. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.
- W. Underground Line Warning Tape:
 - 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.
 - 2. Limit use of underground-line warning tape to direct-buried cables.
 - 3. Install underground-line warning tape for direct-buried cables and cables in raceways.
- X. Baked-Enamel Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on minimum 1-1/2-inch-high sign; where two lines of text are required, use signs minimum 2 inches high.
- Y. Metal-Backed Butyrate Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.
- Z. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.
- AA. Cable Ties: General purpose, for attaching tags, except as listed below:
 - 1. Outdoors: UV-stabilized nylon.
 - 2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.
- C. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil. Stencil legend "DANGER - CONCEALED HIGH-VOLTAGE WIRING" with 3-inch-high, black letters on 20-inch centers.

26 0553 - 7

- 1. Locate identification at changes in direction, at penetrations of walls and floors, and at 10-foot maximum intervals.
- D. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Self-adhesive labels.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- E. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 20 A and 120 V to Ground: Identify with self-adhesive raceway labels.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- F. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
 - 3. "UPS."
- G. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use self-adhesive wraparound labels to identify the phase.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- H. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.
- I. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
- J. Concealed Raceways and Duct Banks, More Than 600 V, within Buildings: Apply floor marking tape to the following finished surfaces:
 - 1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
 - 2. Wall surfaces directly external to raceways concealed within wall.
 - 3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.
- K. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- L. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.
- M. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Selfadhesive labels.

26 0553 - 8

- 1. Apply to exterior of door, cover, or other access.
- 2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 - a. Power-transfer switches.
 - b. Controls with external control power connections.
- N. Arc Flash Warning Labeling: Self-adhesive labels.
- O. Equipment Identification Labels:
 - 1. Indoor Equipment: Self-adhesive label.
 - 2. Outdoor Equipment: Laminated acrylic or melamine sign.
 - 3. Equipment to Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 - b. Enclosures and electrical cabinets.
 - c. Access doors and panels for concealed electrical items.
 - d. Switchgear.
 - e. Switchboards.
 - f. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 - g. Substations.
 - h. Emergency system boxes and enclosures.
 - i. Motor-control centers.
 - j. Enclosed switches.
 - k. Enclosed circuit breakers.
 - I. Enclosed controllers.
 - m. Variable-speed controllers.
 - n. Push-button stations.
 - o. Power-transfer equipment.
 - p. Contactors.
 - q. Remote-controlled switches, dimmer modules, and control devices.
 - r. Battery-inverter units.
 - s. Battery racks.
 - t. Power-generating units.
 - u. Monitoring and control equipment.
 - v. UPS equipment.
 - w. Generator Grounding Method for switched or un-switched neutral conductor.

END OF SECTION

26 0553 - 10