Project Manual

95% Construction Document Volume 02

Tahlequah, Oklahoma

July 26, 2019

Table of Contents Generated by MasterWorks: 7/24/2019

Division	Section Title	Pages
	PROCUREMENT AND CONTRACTING DOCUMENTS GROUP	
DIVISION 00) - PROCUREMENT AND CONTRACTING REQUIREMENTS	
NOT APPLIC	CABLE	
	SPECIFICATIONS GROUP	
	Facility Services Subgroup	
DIVISION 2 1	- FIRE SUPPRESSION	
21 0517	SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING	6
21 1119	FIRE-DEPARTMENT CONNECTIONS	4
21 1313	WET-PIPE SPRINKLER SYSTEMS	12
21 3113	ELECTRIC-DRIVE, CENTRIFUGAL FIRE PUMPS	8
21 3900	CONTROLLERS FOR FIRE-PUMP DRIVERS	12
DIVISION 22	2 - PLUMBING	
22 0513	COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT	4
22 0516	EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING	8
22 0517	SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING	4
22 0518	ESCUTCHEONS FOR PLUMBING PIPING	4
22 0519	METERS AND GAGES FOR PLUMBING PIPING	10
22 0523	GENERAL-DUTY VALVES FOR PLUMBING PIPING	8
22 0529	HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT	12
22 0553	IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT	6
22 0716	PLUMBING EQUIPMENT INSULATION	18
22 0719	PLUMBING PIPING INSULATION	18
22 1116	DOMESTIC WATER PIPING	16
22 1119	DOMESTIC WATER PIPING SPECIALTIES	12
22 1123	DOMESTIC WATER PUMPS	4
22 1123.13	DOMESTIC-WATER PACKAGED BOOSTER PUMPS	16
22 1316	SANITARY WASTE AND VENT PIPING	16
22 1319	SANITARY WASTE PIPING SPECIALTIES	10
22 1413	FACILITY STORM DRAINAGE PIPING STORM DRAINAGE PIPING SPECIALTIES	14
22 1423 22 1429	STORM DRAINAGE FIFING SPECIALTIES SUMP PUMPS	6
22 1429	GENERAL-SERVICE COMPRESSED-AIR PIPING	6
22 1513	FACILITY NATURAL-GAS PIPING	18 12
22 2311	FUEL-FIRED, DOMESTIC-WATER HEATERS	8
22 3400	RESIDENTIAL PLUMBING FIXTURES	6
22 5241	HEAT TRACING FOR PLUMBING PIPING	10
22 6213	VACUUM PIPING FOR LABORATORY AND HEALTHCARE FACILITIES	12
		12

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

23 0513 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT	23 0513	COMMON MOTOR REQUIR	EMENTS FOR HVAC EQUIPMEN	r
--	---------	---------------------	--------------------------	---

4

23 05 14	VARIABLE-FREQUENCY MOTOR CONTROLLERS	12
23 0529	HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT	8
23 0548	VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT	6
23 0553	IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT	4
23 0593	TESTING, ADJUSTING, AND BALANCING FOR HVAC	12
23 0713	DUCT INSULATION	12
23 0716	HVAC EQUIPMENT INSULATION	14
23 2300	REFRIGERANT PIPING	6
23 3113	METAL DUCTS	14
23 3300	AIR DUCT ACCESSORIES	10
23 3423	HVAC POWER VENTILATORS	4
23 3600	AIR TERMINAL UNITS	4
23 3713	DIFFUSERS, REGISTERS, AND GRILLES	4
23 7413	PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS	6
23 7500	HVAC SILENCERS	4
23 8126	SPLIT-SYSTEM AIR-CONDITIONERS	6
23 8219	FAN COIL UNITS	6
DIVISION 25	- INTEGRATED AUTOMATION	
25 5050	DIRECT DIGITAL CONTROLS SYSTEM	18
DIVISION 26	- ELECTRICAL	
26 0519	LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES	8
26 0526	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS	10
26 0529	HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS	6
26 0533	RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS	12
26 0539	UNDERFLOOR RACEWAYS FOR ELECTRICAL SYSTEMS	8
26 0543	UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS	20
26 0544	SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING	4
26 0548.16	SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS	6
26 0553	IDENTIFICATION FOR ELECTRICAL SYSTEMS	10
26 0574	OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY	6
26 0923	LIGHTING CONTROL DEVICES	8
26 0943	CRESTRON LIGHTING CONTROLS	30
26 2200	LOW-VOLTAGE TRANSFORMERS	8
26 2413	SWITCHBOARDS	14
26 2416	PANELBOARDS	14
26 2713	ELECTRICITY METERING	6
26 2726	WIRING DEVICES	10
26 2816	ENCLOSED SWITCHES AND CIRCUIT BREAKERS	14
26 3213	ENGINE GENERATORS	20
26 3600	TRANSFER SWITCHES	10
26 4113	LIGHTNING PROTECTION FOR STRUCTURES	4
26 4313	SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS	6
26 5119	LED INTERIOR LIGHTING	8
26 5619	EXTERIOR LIGHTING	10
	- COMMUNICATIONS	
27 5313	CLOCK SYSTEMS	10

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

28 3111 DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

END OF TABLE OF CONTENTS

20

SECTION 21 0517

SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Stack-sleeve fittings.
 - 3. Sleeve-seal systems.
 - 4. Sleeve-seal fittings.
 - 5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

21 0517 - 1

2.2 STACK-SLEEVE FITTINGS

- A. Manufacturers:
 - 1. Jay R. Smith Mfg. Co.
 - 2. Zurn Industries, LLC
 - 3. (Owner Selection)
- B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

- A. Manufacturers:
 - 1. Advanced Products and Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company
 - 4. (Owner Selection)
- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

- A. Manufacturers:
 - 1. Advanced Products and Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company
 - 4. (Owner Selection)
- B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

17-13 OSU, College of Osteopathic Medicine at	
Cherokee Nation	21 0517 - 2
Childers Architect	
07-26-19	

SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 07 9200 "Joint Sealants."
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 8413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

- A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 - 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 07 6200 "Sheet Metal Flashing and Trim."
 - 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 - 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

21 0517 - 3

- 5. Using grout, seal the space around outside of stack-sleeve fittings.
- B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 8413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Sleeve-seal fittings.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Sleeve-seal fittings.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6: Sleeve-seal fittings.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping

17-13 OSU, College of Osteopathic Medicine at		SLEEVES AND SLEEVE
Cherokee Nation	21 0517 - 4	SEALS FOR FIRE-
Childers Architect		SUPPRESSION PIPING
07-26-19		

and sleeve for installing sleeve-seal system.

- b. Piping NPS 6 Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: PVC-pipe sleeves.
 - b. Piping NPS 6 PVC-pipe sleeves.
- 5. Interior Partitions:
 - a. Piping Smaller Than NPS 6 PVC-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-sheet sleeves.

END OF SECTION

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 0517 - 6

SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

SECTION 21 1119

FIRE-DEPARTMENT CONNECTIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:1. Yard-type fire-department connections.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each fire-department connection. Contractor to coordinate type of FDC, location and finish with local AHJ.

PART 2 - PRODUCTS

2.1 YARD-TYPE FIRE-DEPARTMENT CONNECTION

A. <u>Manufacturers:</u>

- 1. Elkhart Brass Mfg. Co.
- 2. American Fire Hose and Cabinet
- 3. Fire End & Croker Corp.
- 4. (Owner Selection)
- B. Standard: UL 405.
- C. Type: Exposed, freestanding.
- D. Pressure Rating: 175 psig.
- E. Body Material: Corrosion-resistant metal.
- F. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
- G. Caps: Brass, lugged type, with gasket and chain.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 1119 - 1

FIRE-DEPARTMENT CONNECTIONS

- H. Escutcheon Plate: Round, brass, floor type.
- I. Outlet: Bottom, with pipe threads.
- J. Number of Inlets: Two.
- K. Sleeve: Not required.
- L. Sleeve Height: 18 inches.
- M. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE"
- N. Finish: Polished chrome plated.
- O. Outlet Size: NPS 6.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of fire-department connections.
- B. Examine roughing-in for fire-suppression standpipe system to verify actual locations of piping connections before fire-department connection installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install yard-type fire-department connections in concrete slab support. Comply with requirements for concrete in Section 03 3000 "Cast-in-Place Concrete."
- B. Install two protective pipe bollards around each fire-department connection. Comply with requirements for bollards in Section 05 5000 "Metal Fabrications."
- C. Install automatic (ball-drip) drain valve at each check valve for fire-department connection.

END OF SECTION

SECTION 21 1313

WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipes, fittings, and specialties.
 - 2. Specialty valves.
 - 3. Sprinklers.
 - 4. Alarm devices.
 - 5. Control panels.
 - 6. Pressure gages.
- B. Related Requirements:
 - 1. Section 21 1119 "Fire Department Connections" for exposed-, flush-, and yard-type fire department connections.

1.3 **DEFINITIONS**

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175-psig maximum.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Sustainable Design Submittals:
- C. Shop Drawings: For wet-pipe sprinkler systems.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include diagrams for power, signal, and control wiring.
- D. Delegated-Design Submittal: For wet-pipe sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

21 1313 - 1

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Domestic water piping.
 - 2. Compressed air piping.
 - 3. HVAC hydronic piping.
 - 4. Items penetrating finished ceiling include the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
- B. Qualification Data: For qualified Installer and professional engineer.
- C. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.
- D. Welding certificates.
- E. Fire-hydrant flow test report.
- F. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
- G. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wet-pipe sprinkler systems and specialties to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.

21 1313 - 2

- a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.
- B. Welding Qualifications: Qualify procedures and operators according to 2010 ASME Boiler and Pressure Vessel Code.

1.9 FIELD CONDITIONS

- A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:
 - 1. Notify Construction Manager and Owner no fewer than two days in advance of proposed interruption of sprinkler service.
 - 2. Do not proceed with interruption of sprinkler service without Construction Manager's and Owner's written permission.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13.
- B. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.
- C. High-Pressure Piping System Component: Listed for 250-psig minimum working pressure.
- D. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 4000 "Quality Requirements," to design wet-pipe sprinkler systems.
 - 1. Sprinkler system design shall be approved by authorities having jurisdiction.
 - a. Margin of Safety for Available Water Flow and Pressure: 5 PSI percent, including losses through water-service piping, valves, and backflow preventers.
 - b. Sprinkler Occupancy Hazard Classifications:
 - 1) Building Service Areas: Ordinary Hazard, Group 1.
 - 2) Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 - 3) General Storage Areas: Ordinary Hazard, Group 1.
 - 4) Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 - 5) Office and Public Areas: Light Hazard.
 - 2. Minimum Density for Automatic-Sprinkler Piping Design:
 - a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 - b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 - c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
 - 3. Maximum Protection Area per Sprinkler: According to UL listing.
 - 4. Maximum Protection Area per Sprinkler:
 - a. Office Spaces: 225 sq. ft.

21 1313 - 3

- b. Storage Areas: 130 sq. ft.
- c. Mechanical Equipment Rooms: 130 sq. ft.
- d. Electrical Equipment Rooms: 130 sq. ft.
- e. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.
- E. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7.

2.2 STEEL PIPE AND FITTINGS

- A. Standard-Weight Black-Steel Pipe: ASTM A 53/A 53M, Pipe ends may be factory or field formed to match joining method.
- B. Schedule 10, Black-Steel Pipe: ASTM A 135/A 135M or ASTM A 795/A 795M, Schedule 10 in NPS 5 and smaller; and NFPA 13-specified wall thickness in NPS 6 to NPS 10, plain end.
- C. Black-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, standard-weight, seamless steel pipe with threaded ends.
- D. Uncoated-Steel Couplings: ASTM A 865/A 865M, threaded.
- E. Uncoated, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- F. Malleable- or Ductile-Iron Unions: UL 860.
- G. Cast-Iron Flanges: ASME 16.1, Class 125.
- H. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
 - 1. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or EPDM rubber gasket.
 - a. Class 125 and Class 250, Cast-Iron, Flat-Face Flanges: Full-face gaskets.
 - b. Class 150 and Class 300, Ductile-Iron or -Steel, Raised-Face Flanges: Ring-type gaskets.
 - 2. Metal, Pipe-Flange Bolts and Nuts: Carbon steel unless otherwise indicated.
- I. Steel Welding Fittings: ASTM A 234/A 234M and ASME B16.9.
 - 1. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- J. Grooved-Joint, Steel-Pipe Appurtenances:
 - 1. <u>Manufacturers:</u>
 - a. Anvil International
 - b. Tyco Fire Products
 - c. Victaulic Company
 - d. Approved Equal
 - 2. Pressure Rating: 250-psig minimum.
 - 3. Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting, with dimensions matching steel pipe.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 1313 - 4

- 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213 rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.
- K. Steel Pressure-Seal Fittings: UL 213, FM Global-approved, 175-psig pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers' pressure-seal tools.
 - 1. Manufacturers:
 - a. Victaulic Company
 - b. Approved Equal
- L. Automatic (Ball Drip) Drain Valves:
 - 1. <u>Manufacturers:</u>
 - a. Reliable Automatic Sprinkler Co, Inc.
 - b. Tyco Fire Products
 - c. (Owner Selection)
 - 2. Standard: UL 1726.
 - 3. Pressure Rating: 175-psig minimum.
 - 4. Type: Automatic draining, ball check.
 - 5. Size: NPS 3/4.
 - 6. End Connections: Threaded.
- M. Flow Detection and Test Assemblies:
 - 1. <u>Manufacturers:</u>
 - a. Reliable Automatic Sprinker Co,Inc.
 - b. Tyco Fire Products
 - c. Victaulic Company
 - d. Approved Equal
 - 2. Standard: UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."
 - 3. Pressure Rating: 175-psig minimum.
 - 4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
 - 5. Size: Same as connected piping.
 - 6. Inlet and Outlet: Threaded or grooved.
- N. Sprinkler Inspector's Test Fittings:
 - 1. <u>Manufacturers:</u>
 - a. Tyco Fire Products
 - b. Victaulic Company
 - c. Viking Corp.
 - 2. Standard: UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."
 - 3. Pressure Rating: 175-psig minimum.
 - 4. Body Material: Cast- or ductile-iron housing with sight glass.
 - 5. Size: Same as connected piping.
 - 6. Inlet and Outlet: Threaded.
- O. Flexible Sprinkler Hose Fittings:
 - 1. <u>Manufacturers:</u>

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 1313 - 5

- a. Victaulic
- b. Approved Equal
- 2. Standard: UL 1474.
- 3. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
- 4. Pressure Rating: 175-psig minimum.
- 5. Style 108 Coupling

2.3 SPRINKLERS

- A. <u>Manufacturers:</u>
 - 1. Victaulic Company
 - 2. Tyco Fire Products
 - 3. Viking Company
- B. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."
- C. Pressure Rating for Residential Sprinklers: 175-psig maximum.
- D. Pressure Rating for Automatic Sprinklers: 175-psig minimum.
- E. Pressure Rating for High-Pressure Automatic Sprinklers: 250-psig minimum.
- F. Automatic Sprinklers with Heat-Responsive Element:
 - 1. Nonresidential Applications: UL 199.
 - 2. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.
- G. Open Sprinklers with Heat-Responsive Element Removed: UL 199.
 - 1. Nominal Orifice: 1/2 inch, with discharge coefficient K between 5.3 and 5.8.
 - 2. Nominal Orifice: 17/32 inch with discharge coefficient K between 7.4 and 8.2.
- H. Sprinkler Finishes: Chrome plated, bronze and painted.
- I. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Chrome-plated steel, two piece, with 1-inch vertical adjustment.
 - 2. Sidewall Mounting: Chrome-plated steel, one piece.
- J. Sprinkler Guards:
 - 1. <u>Manufacturers:</u>
 - a. Victaulic Company
 - b. Tyco Fire Products
 - c. Viking Company
 - 2. Standard: UL 199.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 1313 - 6

3. Type: Wire cage with fastening device for attaching to sprinkler.

2.4 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Electrically Operated Alarm Bell:
 - 1. <u>Manufacturers:</u>
 - a. Fire-Lite Alarms, Inc.
 - b. Notifier
 - c. Potter Electric Signal Company
 - d. Approved Equal
 - 2. Standard: UL 464.
 - 3. Type: Vibrating, metal alarm bell.
 - 4. Size: 6" diameter.
 - 5. Finish: Red-enamel factory finish, suitable for outdoor use.
 - 6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Water-Flow Indicators:
 - 1. <u>Manufacturers:</u>
 - a. System Sensor
 - b. Viking Corp.
 - c. Potter Electric Signal Company
 - d. Approved Equal
 - 2. Standard: UL 346.
 - 3. Water-Flow Detector: Electrically supervised.
 - 4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 - 5. Type: Paddle operated.
 - 6. Pressure Rating: 250 psig.
 - 7. Design Installation: Horizontal or vertical.
- D. Valve Supervisory Switches:
 - 1. <u>Manufacturers:</u>
 - a. Fire-Lite Alarms, Inc.
 - b. Potter Electric Signal Company
 - c. System Sensor
 - d. (Owner Selection)
 - 2. Standard: UL 346.
 - 3. Type: Electrically supervised.
 - 4. Components: Single-pole, double-throw switch with normally closed contacts.
 - 5. Design: Signals that controlled valve is in other than fully open position.

21 1313 - 7

6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.5 PRESSURE GAGES

- A. <u>Manufacturers:</u>
 - 1. Ashcroft, Inc.
 - 2. AMETEK, Inc.
 - 3. AGF Manufacturing Inc.
 - 4. Approved Equal
- B. Standard: UL 393.
- C. Dial Size: 3-1/2- to 4-1/2-inch diameter.
- D. Pressure Gage Range: 0- to 250-psig minimum.
- E. Label: Include "WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.
- B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING

A. Install shutoff valve, backflow preventer, fire pump, pressure gage, drain, and other accessories indicated at connection to water-service piping. Comply with requirements for backflow preventers in Section 21 1100 "Facility Fire-Suppression Water-Service Piping."

3.3 PIPING INSTALLATION

- A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated on approved working plans.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
 - 2. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.
- B. Piping Standard: Comply with NFPA 13 requirements for installation of sprinkler piping.
- C. Install seismic restraints on piping. Comply with NFPA 13 requirements for seismic-restraint device materials and installation.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 1313 - 8

- D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- E. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.
- H. Install sprinkler piping with drains for complete system drainage.
- I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- J. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.
- K. Install alarm devices in piping systems.
- L. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13. In seismic-rated areas, refer to Section 21 0548 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment."
- M. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with softmetal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they are not subject to freezing.
- N. Fill sprinkler system piping with water.
- O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 21 0517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- P. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 21 0517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- Q. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.4 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

21 1313 - 9

- E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.
- G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- H. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.
- I. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 - 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
- J. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.
- K. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

3.5 VALVE AND SPECIALTIES INSTALLATION

- A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.
- B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.
- D. Specialty Valves:
 - 1. Install valves in vertical position for proper direction of flow, in main supply to system.

3.6 SPRINKLER INSTALLATION

- A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.
- B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 1313 - 10

3.7 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

3.8 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 - 4. Energize circuits to electrical equipment and devices.
 - 5. Coordinate with fire-alarm tests. Operate as required under the direction of low voltage technician.
 - 6. Coordinate with fire-pump tests. Operate as required under the direction of low voltage technician.
 - 7. Verify that equipment hose threads are same as local fire department equipment.
- B. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.9 CLEANING

- A. Clean dirt and debris from sprinklers.
- B. Only sprinklers with their original factory finish are acceptable. Remove and replace any sprinklers that are painted or have any other finish than their original factory finish.

3.10 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain specialty valves and pressure-maintenance pumps.

3.11 PIPING SCHEDULE

- A. Piping between Fire Department Connections and Check Valves: Galvanized, standard-weight steel pipe with joints.
- B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
- C. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 - 1. Standard-weigh, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.

- 2. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
- D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be one of the following:
 - 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 - 2. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
- E. Standard-pressure, wet-pipe sprinkler system, NPS 6 and larger, shall be one of the following:
 - 1. Standard-weight, black-steel pipe with cut or roll grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 2. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.

3.12 SPRINKLER SCHEDULE

- A. Use sprinkler types in subparagraphs below for the following applications:
 - 1. Rooms without Ceilings: Upright sprinklers.
 - 2. Rooms with Suspended Ceilings: Concealed sprinklers
 - 3. Wall Mounting: Sidewall sprinklers.
 - 4. Spaces Subject to Freezing: dry sprinklers, Upright, dry barrel sidewall sprinklers
- B. Provide sprinkler types in subparagraphs below with finishes indicated.
 - 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 - 2. Recessed Sprinklers: white, with white escutcheon.
 - 3. Upright Sprinklers: rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION

SECTION 21 3113

ELECTRIC-DRIVE, CENTRIFUGAL FIRE PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. In-line fire pumps.
 - 2. Fire-pump accessories and specialties.
 - 3. Flowmeter systems.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include rated capacities, operating characteristics, performance curves, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For fire pumps, motor drivers, and fire-pump accessories and specialties.
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For fire pumps, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Product Certificates: For each type of fire pump, from manufacturer.
- C. Source quality-control reports.
- D. Field quality-control reports.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 3113 - 1

ELECTRIC-DRIVE, CENTRIFUGAL FIRE PUMPS

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire pumps to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. NFPA Compliance: Comply with NFPA 20.
- B. Seismic Performance: Fire pumps shall withstand the effects of earthquake motions determined according to **ASCE/SEI 7**.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified **and the unit will be fully operational after the seismic event**.
 - 2. Component Importance Factor: 1.5.
- C. Pump Equipment, Accessory, and Specialty Pressure Rating: 175 psig minimum unless higher pressure rating is indicated.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 GENERAL REQUIREMENTS FOR CENTRIFUGAL FIRE PUMPS

- A. Description: Factory-assembled and -tested fire-pump and driver unit.
- B. Base: Fabricated and attached to fire-pump and driver unit, with reinforcement to resist movement of pump during seismic events when base is anchored to building substrate.
- C. Finish: Red paint applied to factory-assembled and -tested unit before shipping.

2.3 IN-LINE FIRE PUMPS

- A. <u>Manufacturers:</u>
 - 1. Peerless Pump Company
 - 2. Patterson Pump Company
 - 3. S.A. Armstrong Limited
 - 4. (Owner Selection)
- B. Pump:
 - 1. Standard: UL 448, for in-line pumps for fire service.
 - 2. Casing: Radially split case, cast iron, with ASME B16.1 pipe-flange connections.
 - 3. Impeller: Cast bronze, statically and dynamically balanced, and keyed to shaft.
 - 4. Wear Rings: Replaceable bronze.
 - 5. Shaft and Sleeve: Steel shaft with bronze sleeve.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 3113 - 2

ELECTRIC-DRIVE, CENTRIFUGAL FIRE PUMPS

- a. Shaft Bearings: Grease-lubricated ball bearings in cast-iron housing.
- b. Seals: Stuffing box with minimum of four rings of graphite-impregnated braided yarn and bronze packing gland.
- 6. Mounting: Pump and driver shaft is vertical, with motor above pump and pump on base. Motor and pump rotating assembly shall be removable from top without removing the pump casing from the piping.
- C. Coupling: None or rigid.
- D. Driver:
 - 1. Standard: UL 1004A.
 - 2. Type: Electric motor; NEMA MG 1, polyphase Design B.
- E. Capacities and Characteristics:
 - 1. Rated Capacity: 750 gpm.
 - 2. Total Rated Head: 100 psi.
 - 3. Inlet Flange: Class 250.
 - 4. Outlet Flange: Class 250.
 - 5. Suction Head Available at Pump: 150 feet.
 - 6. Motor Horsepower: 75 hp.
 - 7. Motor Speed: 3550 rpm.
 - 8. Electrical Characteristics:
 - a. Volts: 460 V.
 - b. Phase: Three.
 - c. Hertz: 60.

2.4 FIRE-PUMP ACCESSORIES AND SPECIALTIES

- A. Automatic Air-Release Valves: Comply with NFPA 20 for installation in fire-pump casing.
- B. Circulation Relief Valves: UL 1478, brass, spring loaded; for installation in pump discharge piping.
- C. Relief Valves:
 - 1. <u>Manufacturers:</u>
 - a. Zurn Industries
 - b. Cla-Val Automatic Control Valves
 - c. BERMAD Control Valves
 - 2. Description: UL 1478, bronze or cast iron, spring loaded; for installation in firesuppression water-supply piping.
- D. Inlet Fitting: Eccentric tapered reducer at pump suction inlet.
- E. Outlet Fitting: Concentric tapered reducer at pump discharge outlet.
- F. Discharge Cone: Closed or open type.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 3113 - 3

ELECTRIC-DRIVE, CENTRIFUGAL FIRE PUMPS

- G. Hose Valve Manifold Assembly:
 - 1. Standard: Comply with requirements in NFPA 20.
 - 2. Header Pipe: ASTM A 53/A 53M, Schedule 40, galvanized steel, with ends threaded according to ASME B1.20.1.
 - 3. Header Pipe Fittings: ASME B16.4, galvanized cast-iron threaded fittings.
 - 4. Automatic Drain Valve: UL 1726.
 - 5. Manifold:
 - a. Test Connections: Comply with UL 405; however, provide outlets without clappers instead of inlets.
 - b. Body: Flush type, brass or ductile iron, with number of outlets required by NFPA 20.
 - c. Nipples: ASTM A 53/A 53M, Schedule 40, galvanized-steel pipe, with ends threaded according to ASME B1.20.1.
 - d. Adapters and Caps with Chain: Brass or bronze, with outlet threaded according to NFPA 1963 and matching local fire-department threads.
 - e. Escutcheon Plate: Brass or bronze; rectangular.
 - f. Hose Valves: UL 668, bronze, with outlet threaded according to NFPA 1963 and matching local fire-department threads.
 - g. Exposed Parts Finish: Polished, chrome plated.
 - h. Escutcheon Plate Marking: Equivalent to "FIRE PUMP TEST."

2.5 FLOWMETER SYSTEMS

- A. <u>Manufacturers:</u>
 - 1. Victaulic Company
 - 2. Hydro Flow Products, Inc.
 - 3. Emerson Process Management
- B. Description: UL-listed or FM-Approved, fire-pump flowmeter system able to indicate flow to not less than 175 percent of fire-pump rated capacity.
- C. Pressure Rating: 175 psig minimum.
- D. Sensor: Annubar probe, orifice plate, or venturi unless otherwise indicated. Sensor size shall match pipe, tubing, flowmeter, and fittings.
- E. Permanently Mounted Flowmeter: Compatible with flow sensor; with dial not less than 4-1/2 inches in diameter. Include bracket or device for wall mounting.
 - 1. Tubing Package: NPS 1/4 plastic tubing with copper or brass fittings and valves.
- F. Portable Flowmeter: Compatible with flow sensor; with dial not less than 4-1/2 inches in diameter and with two 12-foot- long hoses in carrying case.

2.6 GROUT

- A. Standard: ASTM C 1107, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink and recommended for interior and exterior applications.

17-13 OSU, College of Osteopathic Medicine at		ELECTRIC-DRIVE,
Cherokee Nation	21 3113 - 4	CENTRIFUGAL FIRE
Childers Architect		PUMPS
07-26-19		

- C. Design Mix: 5000-psi (34-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.7 SOURCE QUALITY CONTROL

- A. Testing: Test and inspect fire pumps according to UL 448 requirements for "Operation Test" and "Manufacturing and Production Tests."
 - 1. Verification of Performance: Rate fire pumps according to UL 448.
- B. Fire pumps will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine equipment bases and anchorage provisions, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance of fire pumps.
- B. Examine roughing-in for fire-suppression piping systems to verify actual locations of piping connections before fire-pump installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Fire-Pump Installation Standard: Comply with NFPA 20 for installation of fire pumps, relief valves, and related components.
- B. Equipment Mounting:
 - 1. Install fire pumps on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 03 3000 "Cast-in-Place Concrete." and Section 03 3053 "Miscellaneous Cast-in-Place Concrete."
 - Comply with requirements for vibration isolation and seismic-control devices specified in Section 21 0548 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment."
 - 3. Comply with requirements for vibration isolation devices specified in Section 21 0548.13 "Vibration Controls for Fire-Suppression Piping and Equipment."
- C. Install fire-pump suction and discharge piping equal to or larger than sizes required by NFPA 20.
- D. Support piping and pumps separately, so weight of piping does not rest on pumps.
- E. Install valves that are same size as connecting piping. Comply with requirements for fire-

17-13 OSU, College of Osteopathic Medicine at		ELECTRIC-DRIVE,
Cherokee Nation	21 3113 - 5	CENTRIFUGAL FIRE
Childers Architect		PUMPS
07-26-19		

protection valves specified in Section 21 1313 "Wet-Pipe Sprinkler Systems."

- F. Install pressure gages on fire-pump suction and discharge flange pressure-gage tappings. Comply with requirements for pressure gages specified in Section 21 1313 "Wet-Pipe Sprinkler Systems."
- G. Install piping hangers and supports, anchors, valves, gages, and equipment supports according to NFPA 20.
- H. Install flowmeters and sensors. Install flowmeter-system components and make connections according to NFPA 20 and manufacturer's written instructions.
- I. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not factory mounted. Furnish copies of manufacturers' wiring diagram submittals to electrical Installer.
- J. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

3.3 ALIGNMENT

- A. After alignment is correct, tighten anchor bolts evenly. Fill baseplate completely with grout, with metal blocks and shims or wedges in place. Tighten anchor bolts after grout has hardened. Check alignment and make required corrections.
- B. Align piping connections.
- C. Align pump and driver shafts for angular and parallel alignment according to HI 1.4 and to tolerances specified by manufacturer.

3.4 CONNECTIONS

- A. Comply with requirements for piping and valves specified in Section 21 1313 "Wet-Pipe Sprinkler Systems." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to pumps and equipment to allow service and maintenance.
- C. Connect relief-valve discharge to drainage piping or point of discharge.
- D. Connect flowmeter-system meters, sensors, and valves to tubing.
- E. Connect fire pumps to their controllers.

3.5 IDENTIFICATION

A. Identify system components. Comply with requirements for fire-pump marking according to NFPA 20.

3.6 FIELD QUALITY CONTROL

A. Test each fire pump with its controller as a unit. Comply with requirements for electric-motor-

17-13 OSU, College of Osteopathic Medicine at		ELECTRIC-DRIVE,
Cherokee Nation	21 3113 - 6	CENTRIFUGAL FIRE
Childers Architect		PUMPS
07-26-19		

driver fire-pump controllers specified in Section 21 3900 "Controllers for Fire-Pump Drivers."

- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative.
 - 1. After installing components, assemblies, and equipment, including controller, test for compliance with requirements.
 - 2. Test according to NFPA 20 for acceptance and performance testing.
 - 3. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 4. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Components, assemblies, and equipment will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.
- F. Furnish fire hoses in number, size, and length required to reach storm drain or other acceptable location to dispose of fire-pump test water. Hoses are for tests only and do not convey to Owner.

3.7 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire pumps.

END OF SECTION

SECTION 21 3900

CONTROLLERS FOR FIRE-PUMP DRIVERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Full-service, full-voltage controllers rated 600 V and less.
 - 2. Controllers for pressure-maintenance pumps.
 - 3. Remote alarm panels.
 - 4. Low-suction-shutdown panels.

1.3 DEFINITIONS

- A. ATS: Automatic transfer switch(es).
- B. ECM: Electronic control module.
- C. MCCB: Molded-case circuit breaker.
- D. N.O.: Normally open.

1.4 **PERFORMANCE REQUIREMENTS**

- A. Seismic Performance: Fire-pump controllers and alarm panels shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For each type of product indicated. Include dimensioned plans, elevations, sections, details, and attachments to other work, including required clearances and service spaces around controller enclosures.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 3900 - 1

CONTROLLERS FOR FIRE-PUMP DRIVERS

- 1. Show tabulations of the following:
 - a. Each installed unit's type and details.
 - b. Enclosure types and details for types other than NEMA 250, Type 2.
 - c. Factory-installed devices.
 - d. Nameplate legends.
 - e. Short-circuit current (withstand) rating of integrated unit.
 - f. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices.
 - g. Specified modifications.
- 2. Detail equipment assemblies and indicate dimensions, weights, loads, method of field assembly, components, and location and size of each field connection.
- 3. Schematic and Connection Diagrams: For power, signal, alarm, and control wiring and for pressure-sensing tubing.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Certificates: For each type of product indicated, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Product Certificates: For each type of product indicated, from manufacturer.
- D. Manufacturer's factory test reports of fully assembled and tested equipment.
- E. Source quality-control reports.
- F. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For each type of product indicated to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.
 - 2. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor-based logic controls.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 3900 - 2

CONTROLLERS FOR FIRE-PUMP DRIVERS

- 1. Indicating Lights: Two of each type and color of lens installed; two of each type and size of lamp installed.
- 2. Auxiliary Contacts: One for each size and type of magnetic contactor installed.
- 3. Power Contacts: Three for each size and type of magnetic contactor installed.
- 4. Contactor Coils: One for each size and type of magnetic controller installed.
- 5. Relay Boards: One for each size and type of relay board installed.
- 6. Operator Interface: One microprocessor board(s), complete with display and membrane keypad.

1.9 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of an NRTL.
- B. Source Limitations: Obtain fire-pump controllers and all associated equipment from single source or producer.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with standards of authorities having jurisdiction pertaining to materials and installation.
- E. Comply with NFPA 20 and NFPA 70.
- F. IEEE Compliance: Fabricate and test enclosed controllers according to IEEE 344 to withstand seismic forces defined in Section 26 0548.16 "Seismic Controls for Electrical Systems."

1.10 DELIVERY, STORAGE, AND HANDLING

A. Store controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

1.11 PROJECT CONDITIONS

- A. Environmental Limitations:
 - 1. Ambient Temperature Rating: Not less than 40 deg F (5 deg C) and not exceeding 122 deg F (50 deg C) unless otherwise indicated.
 - 2. Altitude Rating: Not exceeding 6600 feet (2010 m) unless otherwise indicated.
- B. Interruption of Existing Electric Service: Notify Construction Manager no fewer than seven days in advance of proposed interruption of electric service and comply with NFPA 70E.

1.12 COORDINATION

- A. Coordinate layout and installation of controllers with other construction including conduit, piping, fire-pump equipment, and adjacent surfaces. Maintain required clearances for workspace and equipment access doors and panels. Ensure that controllers are within sight of fire-pump drivers.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 3900 - 3

CONTROLLERS FOR FIRE-PUMP DRIVERS

PART 2 - PRODUCTS

2.1 FULL-SERVICE CONTROLLERS

A. Manufacturers

- 1. ASCO
- 2. Eaton
- 3. Master Control Systems
- B. General Requirements for Full-Service Controllers:
 - 1. Comply with NFPA 20 and UL 218.
 - 2. Listed by an NRTL for electric-motor driver for fire-pump service.
 - 3. Combined automatic and nonautomatic operation.
 - 4. Factory assembled, wired, and tested; continuous-duty rated.
 - 5. Service Equipment Label: NRTL labeled for use as service equipment.
- C. Method of Starting:
 - 1. Pressure-switch actuated.
 - a. Water-pressure-actuated switch and pressure transducer with independent highand low-calibrated adjustments responsive to water pressure in fire-suppression piping.
 - b. System pressure recorder, electric ac driven, with spring backup.
 - c. Programmable minimum-run-time relay to prevent short cycling.
 - d. Programmable timer for weekly tests.
 - 2. Magnetic Controller: Across-the-line type.
 - 3. Solid-State Controller: Reduced-voltage type.
 - 4. Emergency Start: Mechanically operated start handle that closes and retains the motor RUN contactor independent of all electric or pressure actuators.
- D. Method of Stopping: Automatic and nonautomatic shutdown after automatic starting.
- E. Capacity: Rated for fire-pump-driver horsepower and short-circuit-current (withstand) rating equal to or greater than short-circuit current available at controller location.
- F. Method of Isolation and Overcurrent Protection: Interlocked isolating switch and nonthermal MCCB; with a common, externally mounted operating handle, and providing locked-rotor protection.
- G. Door-Mounted Operator Interface and Controls:
 - 1. Monitor, display, and control the devices, alarms, functions, and operations listed in NFPA 20 as required for drivers and controller types used.
 - 2. Method of Control and Indication:
 - a. Microprocessor-based logic controller, with multiline digital readout.
 - b. Membrane keypad.
 - c. LED alarm and status indicating lights.
 - 3. Local and Remote Alarm and Status Indications:

21 3900 - 4

- a. Controller power on.
- b. Motor running condition.
- c. Loss-of-line power.
- d. Line-power phase reversal.
- e. Line-power single-phase condition.
- 4. Audible alarm, with silence push button.
- 5. Nonautomatic START and STOP push buttons or switches.
- H. Optional Features:
 - 1. Extra Output Contacts:
 - a. One N.O. contact(s) for motor running condition.
 - b. One set(s) of contacts for loss-of-line power.
 - c. One each, Form C contacts for high and low reservoir level.
 - 2. Local alarm bell.
 - 3. Door-mounted thermal or impact printer for alarm and status logs.
 - 4. Operator Interface Communications Ports: USB, Ethernet, and RS485.
- I. ATS:
 - 1. Complies with NFPA 20, UL 218, and UL 1008.
 - 2. Integral with controller as a listed combination fire-pump controller and power transfer switch.
 - 3. Automatically transfers fire-pump controller from normal power supply to alternate power supply in event of power failure.
 - 4. Allows manual transfer from one source to the other.
 - 5. Alternate-Source Isolating and Disconnecting Means: Integral molded-case switch, with an externally mounted operating handle.
 - 6. Alternate-Source Isolating and Disconnecting Means: Mechanically interlocked isolation switch and circuit breaker rated at a minimum of 115 percent of rated motor full-load current, with an externally mounted operating handle; circuit breaker shall be provided with nonthermal sensing, instantaneous-only short-circuit overcurrent protection to comply with available fault currents.
 - 7. Local and Remote Alarm and Status Indications:
 - a. Normal source available.
 - b. Alternate source available.
 - c. In normal position.
 - d. In alternate position.
 - e. Isolating means open.
 - 8. Audible alarm, with silence push button.
 - 9. Nonautomatic (manual, nonelectric) means of transfer.
 - 10. Engine test push button.
 - 11. Start generator output contacts.
 - 12. Timer for weekly generator tests.

2.2 CONTROLLERS FOR PRESSURE-MAINTENANCE PUMPS

- A. Manufacturers
 - 1. ASCO

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

21 3900 - 5

CONTROLLERS FOR FIRE-PUMP DRIVERS

- 2. Eaton
- 3. Master Control Systems
- B. General Requirements for Pressure-Maintenance-Pump Controllers:
 - 1. Type: UL 508 factory assembled, -wired, and tested, across-the-line; for combined automatic and manual operation.
 - 2. Enclosure: UL 508 and NEMA 250, Type 2 for wall-mounting.
 - 3. Factory assembled, wired, and tested.
 - 4. Finish: Manufacturer's standard color paint.
- C. Rate controller for scheduled horsepower and include the following:
 - 1. Fusible disconnect switch.
 - 2. Pressure switch.
 - 3. Hand-off-auto selector switch.
 - 4. Pilot light.
 - 5. Running period timer.

2.3 REMOTE ALARM PANELS

- A. General Requirements for Remote Alarm Panels: Comply with NFPA 20 and UL 218; listed by an NRTL for fire-pump service.
- A. Manufacturers
 - 1. ASCO
 - 2. Eaton
 - 3. Master Control Systems
- B. General Requirements for Remote Alarm Panels: Factory assembled, wired, and tested.
- C. Supervisory and Normal Control Voltage: 120-V ac; single source.
- D. Audible and Visual Alarm and Status Indications:
 - 1. Driver running.
 - 2. Loss of phase.
 - 3. Phase reversal.
 - 4. Supervised power on.
 - 5. Common trouble on the controller.
 - 6. Controller connected to alternate power source.
- E. Audible and Visual Alarm and Status Indications: Manufacturer's standard indicating lights; push-to-test.
 - 1. Engine running.
 - 2. Controller main switch turned to the off or manual position.
 - 3. Supervised power on.
 - 4. Common trouble on the controller or engine..
 - 5. Common pump room trouble.
 - 6. Controller connected to alternate power source.

- F. Audible alarm, with silence push button.
- G. Pump REMOTE START push button.

2.4 LOW-SUCTION-SHUTDOWN PANELS

- A. Manufacturers
 - 1. ASCO
 - 2. Master Control Systems
- B. General Requirements for Low-Suction-Shutdown Panels:
 - 1. Listed by an NRTL for fire-pump service.
 - 2. Factory assembled, wired, and tested.
 - 3. Prevents automatic start of fire pump, and shuts down automatically started fire pump, on low-suction pressure.
 - 4. Automatic reset.
- C. Operation: External contact input.
- D. Supervisory and Normal Control Voltage: 120-V ac; single source.
- E. Include audible and visual alarms and status indications, with silence push button, for the following conditions:
 - 1. Control power available.
 - 2. Low-suction pressure.
 - 3. Normal-suction pressure.

2.5 ENCLOSURES

- A. Fire-Pump Controllers, ATS, Remote Alarm Panels, and Low-Suction-Shutdown Panels: NEMA 250, to comply with environmental conditions at installed locations and NFPA 20.
 - 1. Indoor, Dry and Clean Locations: Type 1 (IEC IP10).
 - 2. Indoor Locations Subject to Dripping Noncorrosive Liquids: Type 2 (IEC IP11).
 - 3. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12 (IEC IP12).
- B. Enclosure Color: Manufacturer's standard "fire-pump-controller red".
- C. Nameplates: Comply with NFPA 20; complete with capacity, characteristics, approvals, listings, and other pertinent data.
- D. Optional Features:
 - 1. Floor stands, 12 inches (305 mm) high, for floor-mounted controllers.
 - 2. Space heater, 120-V ac, with thermostat.
 - 3. Tropicalization.

21 3900 - 7

CONTROLLERS FOR FIRE-PUMP DRIVERS

2.6 SOURCE QUALITY CONTROL

- A. Testing: Test and inspect fire-pump controllers according to requirements in NFPA 20 and UL 218.
 - 1. Verification of Performance: Rate controllers according to operation of functions and features specified.
- B. Fire-pump controllers will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and surfaces to receive equipment, with Installer present, for compliance with requirements and other conditions affecting performance.
- B. Examine equipment before installation. Reject equipment that is wet or damaged by moisture or mold.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONTROLLER INSTALLATION

- A. Install controllers within sight of their respective drivers.
- B. Connect controllers to their dedicated pressure-sensing lines.
- C. Wall-Mounting Controllers: Install controllers on walls with disconnect operating handles not higher than 79 inches (2006 mm) above finished floor, and bottom of enclosure not less than 12 inches (305 mm) above finished floor unless otherwise indicated. Bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 26 0529 "Hangers and Supports for Electrical Systems."
- D. Floor-Mounting Controllers: Install controllers on 4-inch (100-mm) nominal-thickness concrete bases, using floor stands high enough so that the bottom of enclosure cabinet is not less than 12 inches (305 mm) above finished floor. Comply with requirements for concrete bases specified in Section 03 3000 "Cast-in-Place Concrete."
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
 - 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base, and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.

- E. Seismic Bracing: Comply with requirements specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."
- F. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- G. Comply with NEMA ICS 15.

3.3 REMOTE ALARM AND LOW-SUCTION-SHUTDOWN PANEL INSTALLATION

A. Install panels on walls with tops not higher than 72 inches (1829 mm) above finished floor unless otherwise indicated. Bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For ATS not on walls, provide freestanding racks complying with Section 26 0529 "Hangers and Supports for Electrical Systems."

3.4 POWER WIRING INSTALLATION

A. Install power wiring between controllers and their services or sources, and between controllers and their drivers. Comply with requirements in NFPA 20, NFPA 70, and Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

3.5 CONTROL AND ALARM WIRING INSTALLATION

- A. Install wiring between controllers and remote devices and facility's central monitoring system. Comply with requirements in NFPA 20, NFPA 70, and Section 26 0523 "Control-Voltage Electrical Power Cables."
- B. Install wiring between remote alarm and low-suction-shutdown panels and controllers. Comply with requirements in NFPA 20, NFPA 70, and Section 26 0523 "Control-Voltage Electrical Power Cables."
- C. Install wiring between controllers and the building's fire-alarm system. Comply with requirements specified in Section 28 3111 "Digital, Addressable Fire-Alarm System."
- D. Bundle, train, and support wiring in enclosures.
- E. Connect remote manual and automatic activation devices where applicable.

3.6 IDENTIFICATION

- A. Comply with requirements in NFPA 20 for marking fire-pump controllers.
- B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification in NFPA 20 and as specified in Section 26 0553 "Identification for Electrical Systems."

3.7 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Acceptance Testing Preparation:
 - 1. Inspect and Test Each Component:
 - a. Inspect wiring, components, connections, and equipment installations. Test and adjust components and equipment.
 - b. Test insulation resistance for each element, component, connecting supply, feeder, and control circuits.
 - c. Test continuity of each circuit.
 - 2. Verify and Test Each Electric-Driver Controller:
 - a. Verify that voltages at controller locations are within plus 10 or minus 1 percent of motor nameplate rated voltages, with motors off. If outside this range for any motor, notify Construction Manager before starting the motor(s).
 - b. Test each motor for proper phase rotation.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- E. Field Acceptance Tests:
 - 1. Do not begin field acceptance testing until suction piping has been flushed and hydrostatically tested and the certificate for flushing and testing has been submitted to Construction Manager and authorities having jurisdiction.
 - 2. Prior to starting, notify authorities having jurisdiction of the time and place of the acceptance testing.
 - 3. Engage manufacturer's factory-authorized service representative to be present during the testing.
 - 4. Perform field acceptance tests as outlined in NFPA 20.
- F. Controllers will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports.

3.8 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.9 ADJUSTING

- A. Adjust controllers and battery charger systems to function smoothly and as recommended by manufacturer.
- B. Set field-adjustable switches, auxiliary relays, time-delay relays, and timers.
- C. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
- D. Set field-adjustable pressure switches.

3.10 PROTECTION

- A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until enclosed controllers are ready to be energized and placed into service.
- B. Replace controllers whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.11 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain controllers, remote alarm panels, low-suction-shutdown panels, and to use and reprogram microprocessor-based controls within this equipment.

END OF SECTION

SECTION 22 0513

COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with NEMA MG 1 unless otherwise indicated.
- B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

22 0513 - 1

COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Multispeed Motors: Separate winding for each speed.
- F. Rotor: Random-wound, squirrel cage.
- G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- H. Temperature Rise: Match insulation rating.
- I. Insulation: Class F
- J. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

22 0513 - 2

COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

SECTION 22 0516

EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Rubber union connector packless expansion joints.
 - 2. Flexible-hose packless expansion joints.
 - 3. Metal-bellows packless expansion joints.
 - 4. Externally pressurized metal-bellows packless expansion joints.
 - 5. Rubber packless expansion joints.
 - 6. Grooved-joint expansion joints.
 - 7. Alignment guides and anchors.
 - 8. Pipe loops and swing connections.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Delegated-Design Submittal: For each anchor and alignment guide, including analysis data, signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 - 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 - 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 - 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For expansion joints to include in maintenance manuals.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0516 - 1

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe and Pressure-Vessel Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.
- B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

2.2 PACKLESS EXPANSION JOINTS

- A. Rubber Union Connector Expansion Joints [RUEJ-01] < Insert drawing designation >:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flex-Hose Co., Inc</u>.
 - b. <u>Flexicraft Industries</u>.
 - c. <u>Mason Industries, Inc</u>.
 - 2. Material: Twin reinforced-rubber spheres[with external restraining cables].
 - 3. Minimum Pressure Rating: [150 psig at 170 deg F] < Insert value>, unless otherwise indicated.
 - 4. End Connections for NPS 2 and Smaller: Threaded.
- B. Flexible-Hose Packless Expansion Joints [FHEJ-01] <Insert drawing designation>:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flex-Hose Co., Inc</u>.
 - b. Flexicraft Industries.
 - c. <u>Mason Industries, Inc</u>.
 - 2. Description: Manufactured assembly with inlet and outlet elbow fittings and two flexiblemetal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose.
 - 3. Flexible Hose: Corrugated-metal inner hoses and braided outer sheaths.
 - 4. Expansion Joints for Copper Tubing NPS 2 and Smaller: Copper-alloy fittings with [solder-joint] <Insert type> end connections.
 - a. Bronze hoses and single-braid bronze sheaths with 450 psig at 70 deg F and 340 psig at 450 deg F ratings.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0516 - 2

- b. Bronze hoses and double-braid bronze sheaths with 700 psig at 70 deg F and 500 psig at 450 deg F ratings.
- 5. Expansion Joints for Copper Tubing NPS 2-1/2 to NPS 4: Copper-alloy fittings with [**threaded**] <**Insert type**> end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 300 psig at 70 deg F and 225 psig at 450 deg F ratings.
 - b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 420 psig at 70 deg F and 315 psig at 450 deg F ratings.
- 6. Expansion Joints for Steel Piping NPS 2 and Smaller: Carbon-steel fittings with threaded end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 450 psig at 70 deg F and 325 psig at 600 deg F ratings.
 - b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 700 psig at 70 deg F and 515 psig at 600 deg F ratings.
- 7. Expansion Joints for Steel Piping NPS 2-1/2 to NPS 6: Carbon-steel fittings with [**flanged**] [**welded**] end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 200 psig at 70 deg F and 145 psig at 600 deg F ratings.
 - b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 275 psig at 70 deg F and 200 psig at 600 deg F ratings.
- 8. Expansion Joints for Steel Piping NPS 8 to NPS 12: Carbon-steel fittings with [flanged] [welded] end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 125 psig at 70 deg F and 90 psig at 600 deg F ratings.
 - b. Stainless-steel hoses and double-braid, stainless-steel sheaths with 165 psig at 70 deg F and 120 psig at 600 deg F ratings.
- 9. Expansion Joints for Steel Piping NPS 14 and Larger: Carbon-steel fittings with [flanged] [welded] end connections.
 - a. Stainless-steel hoses and double-braid, stainless-steel sheaths with 165 psig at 70 deg F and 120 psig at 600 deg F ratings.
- C. Metal-Bellows Packless Expansion Joints [MBEJ-01] < Insert drawing designation >:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flex-Hose Co., Inc</u>.
 - b. Mason Industries, Inc.
 - c. Metraflex Company (The).
 - 2. Standards: ASTM F 1120 and EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."
 - 3. Type: Circular, corrugated bellows[with external tie rods].
 - 4. Minimum Pressure Rating: [150 psig] [175 psig] [200 psig] <Insert value>, unless otherwise indicated.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0516 - 3

- 5. Configuration: [Single joint] [Single joint with base] [and] [double joint with base] class(es), unless otherwise indicated.
- 6. Expansion Joints for Copper Tubing: [**Single-**] [**or**] [**multi-**] ply phosphor-bronze bellows, copper pipe ends, and brass shrouds.
 - a. End Connections for Copper Tubing NPS 2 and Smaller: [Solder joint] [or] [threaded].
 - b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: [Solder joint] [or] [threaded].
 - c. End Connections for Copper Tubing NPS 5 and Larger: Flanged.
- 7. Expansion Joints for Steel Piping: [**Single-**] [**or**] [**multi-**] ply stainless-steel bellows, steel pipe ends, and carbon-steel shroud.
 - a. End Connections for Steel Pipe NPS 2 and Smaller: Threaded.
 - b. End Connections for Steel Pipe NPS 2-1/2 and Larger: [Flanged] [Welded].
- D. Externally Pressurized Metal-Bellows Packless Expansion Joints [EPEJ-01] <Insert drawing designation>:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flex-Hose Co., Inc</u>.
 - b. <u>Mason Industries, Inc</u>.
 - c. <u>Metraflex Company (The)</u>.
 - 2. Minimum Pressure Rating: [150 psig] [200 psig] [300 psig] <Insert value>, unless otherwise indicated.
 - 3. Description:
 - a. Totally enclosed, externally pressurized, multi-ply, stainless-steel bellows isolated from fluid flow by an internal pipe sleeve.
 - b. Carbon-steel housing.
 - c. Drain plugs and lifting lug for NPS 3 and larger.
 - d. Bellows shall have operating clearance between the internal pipe sleeves and the external shrouds.
 - e. Joints shall be supplied with a built-in scale to confirm the starting position and operating movement.
 - f. Joint Axial Movement: [4 inches] [6 inches] [8 inches] <Insert compression limit> of compression and [0.75 inch] [1 inch] [2 inches] <Insert extension limit> of extension.
 - 4. Permanent Locking Bolts: Set locking bolts to maintain joint lengths during installation. Temporary welding tabs that are removed after installation in lieu of locking bolts are not acceptable.
 - 5. End Connection Configuration: Flanged; one raised, fixed and one floating flange.
- E. Rubber Packless Expansion Joints [REJ-01] <Insert drawing designation>:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flex-Hose Co., Inc</u>.
 - b. <u>Mason Industries, Inc</u>.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0516 - 4

c. <u>Metraflex Company (The)</u>.

- 2. Standards: ASTM F 1123 and FSA's "Technical Handbook: Non-Metallic Expansion Joints and Flexible Pipe Connectors."
- 3. Material: Fabric-reinforced rubber complying with FSA-PSJ-703.
- 4. Arch Type: [Single] [or] [multiple] arches[with external control rods].
- 5. Spherical Type: [Single] [or] [multiple] spheres[with external control rods].
- 6. Minimum Pressure Rating for NPS 1-1/2 to NPS 4: [150 psig at 220 deg F] <Insert value>.
- 7. Minimum Pressure Rating for NPS 5 and NPS 6: [140 psig at 200 deg F] <Insert value>.
- 8. Minimum Pressure Rating for NPS 8 to NPS 12: [140 psig at 180 deg F] < Insert value>.
- 9. Material for Fluids Containing Acids, Alkalis, or Chemicals: [Butyl rubber] [Chlorosulfonyl-polyethylene rubber] [Ethylene-propylene-diene terpolymer rubber] <Insert material>.
- 10. Material for Fluids Containing Gas, Hydrocarbons, or Oil: [Buna-N] [Chlorosulfonated polyethylene synthetic rubber] <Insert material>.
- 11. Material for Water: [Butyl rubber] [Buna-N] [Chlorosulfonated polyethylene synthetic rubber] [Chlorosulfonyl-polyethylene rubber] [Ethylene-propylene-diene terpolymer rubber] [Natural rubber].
- 12. End Connections: Full-faced, integral steel flanges with steel retaining rings.

2.3 GROOVED-JOINT EXPANSION JOINTS

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flex-Hose Co., Inc</u>.
 - b. <u>Mason Industries, Inc</u>.
 - c. <u>Metraflex Company (The)</u>.
- B. Description: Factory-assembled expansion joint made of several grooved-end pipe nipples, couplings, and grooved joints.
- C. Standard: AWWA C606, for grooved joints.
- D. Nipples: [Galvanized,]ASTM A 53/A 53M, Schedule 40, Type E or S, steel pipe with grooved ends.
- E. Couplings: [Five] [Seven] [10] [12] <Insert number>, flexible type for steel-pipe dimensions. Include ferrous housing sections, [Buna-N gasket suitable for diluted acid, alkaline fluids, and cold and hot water] [ethylene-propylene-diene terpolymer rubber gasket suitable for cold and hot water], and bolts and nuts.

2.4 ALIGNMENT GUIDES AND ANCHORS

- A. Alignment Guides [AG-01] < Insert drawing designation >:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flex-Hose Co., Inc</u>.
 - b. <u>Mason Industries, Inc</u>.
 - c. <u>Metraflex Company (The)</u>.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0516 - 5

- 2. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding slider for bolting to pipe.
- B. Anchor Materials:
 - 1. Steel Shapes and Plates: ASTM A 36/A 36M.
 - 2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
 - 3. Washers: ASTM F 844, steel, plain, flat washers.
 - 4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.
 - a. Stud: Threaded, zinc-coated carbon steel.
 - b. Expansion Plug: Zinc-coated steel.
 - c. Washer and Nut: Zinc-coated steel.
 - 5. Chemical Fasteners: Insert-type stud, bonding-system anchor for use with hardened portland cement concrete, with tension and shear capacities appropriate for application.
 - a. Bonding Material: ASTM C 881/C 881M, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.
 - b. Stud: ASTM A 307, zinc-coated carbon steel with continuous thread on stud, unless otherwise indicated.
 - c. Washer and Nut: Zinc-coated steel.

PART 3 - EXECUTION

3.1 EXPANSION JOINT INSTALLATION

- A. Install expansion joints of sizes matching sizes of piping in which they are installed.
- B. Install metal-bellows expansion joints according to EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."
- C. Install rubber packless expansion joints according to FSA-PSJ-703.
- D. Install grooved-joint expansion joints to grooved-end steel piping.

3.2 PIPE LOOP AND SWING CONNECTION INSTALLATION

- A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.
- B. Connect risers and branch connections to mains with at least [five] <Insert number> pipe fittings, including tee in main.
- C. Connect risers and branch connections to terminal units with at least [four] < Insert number> pipe fittings, including tee in riser.

22 0516 - 6

D. Connect mains and branch connections to terminal units with at least [four] <Insert number> pipe fittings, including tee in main.

3.3 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

- A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.
- B. Install [**one**] [**two**] guide(s) on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than [**four**] <**Insert number**> pipe diameters from expansion joint.
- C. Attach guides to pipe, and secure guides to building structure.
- D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.
- E. Anchor Attachments:
 - 1. Anchor Attachment to Steel Pipe: Attach by welding. Comply with ASME B31.9 and ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 2. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24; U bolts bolted to anchor.
- F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.
 - 1. Anchor Attachment to Steel Structural Members: Attach by welding.
 - 2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.
- G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION

SECTION 22 0517

SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Stack-sleeve fittings.
 - 3. Sleeve-seal systems.
 - 4. Sleeve-seal fittings.
 - 5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

17-13 OSU, College of Osteopathic Medicine at		SLEEVES AND SLEEVE
Cherokee Nation	22 0517 - 1	SEALS FOR PLUMBING
Childers Architect		PIPING
07-26-19		

2.2 STACK-SLEEVE FITTINGS

- A. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

17-13 OSU, College of Osteopathic Medicine at	
Cherokee Nation	22 0517 - 2
Childers Architect	
07-26-19	

SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

- 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
- 2. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
- 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 07 9200 "Joint Sealants."
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 8413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

- A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 - 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 07 6200 "Sheet Metal Flashing and Trim."
 - 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 - 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 5. Using grout, seal the space around outside of stack-sleeve fittings.
- B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 8413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

22 0517 - 3

3.4 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade: a. Galvanized-steel wall sleeves
 - 2. Exterior Concrete Walls below Grade:
 - a. Galvanized-steel-pipe sleeves with sleeve-seal system
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs-on-Grade:
 - a. Galvanized-steel wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 4. Concrete Slabs above Grade:
 - a. Galvanized-steel-pipe sleeves.
 - 5. Interior Partitions:
 - a. Galvanized-steel-sheet sleeves.

END OF SECTION

SECTION 22 0518

ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plate finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
- D. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
- E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.2 FLOOR PLATES

- A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
- B. Split-Casting Floor Plates: Cast brass with concealed hinge.

22 0518 - 1

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished, chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 - g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type.
 - h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass finish.
 - i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.
 - j. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.
 - k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.
 - 2. Escutcheons for Existing Piping:
 - a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 - b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
 - c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 - e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 - g. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated finish.
 - h. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge.
 - i. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chromeplated finish.
 - j. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0518 - 2

ESCUTCHEONS FOR PLUMBING PIPING

- 1. New Piping: One-piece, floor-plate type.
- 2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION

22 0518 - 4

ESCUTCHEONS FOR PLUMBING PIPING

SECTION 22 0519

METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bimetallic-actuated thermometers.
 - 2. Filled-system thermometers.
 - 3. Liquid-in-glass thermometers.
 - 4. Light-activated thermometers.
 - 5. Thermowells.
 - 6. Dial-type pressure gages.
 - 7. Gage attachments.
 - 8. Test plugs.
 - 9. Test-plug kits.
 - 10. Sight flow indicators.
- B. Related Requirements:
 - 1. Section 22 1113 "Facility Water Distribution Piping" for domestic water meters and combined domestic and fire-protection water-service meters outside the building.
 - 2. Section 22 1119 "Domestic Water Piping Specialties" for water meters.
 - 3. Section 22 1513 "General-Service Compressed-Air Piping" for compressed air gages.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

22 0519 - 1

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

- A. Standard: ASME B40.200.
- B. Case: Liquid-filled and sealed type(s); stainless steel with 3-inch 5-inch nominal diameter.
- C. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F and deg C.
- D. Connector Type(s): Union joint, adjustable angle, with unified-inch screw threads.
- E. Connector Size: 1/2 inch with ASME B1.1 screw threads.
- F. Stem: 0.25 or 0.375 inch in diameter; stainless steel.
- G. Window: Plain glass.
- H. Ring: Stainless steel.
- I. Element: Bimetal coil.
- J. Pointer: Dark-colored metal.
- K. Accuracy: Plus or minus 1 percent of scale range.

2.2 FILLED-SYSTEM THERMOMETERS

- A. Direct-Mounted, Metal-Case, Vapor-Actuated Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Sealed type, cast aluminum or drawn steel 4-1/2-inch nominal diameter.
 - 3. Element: Bourdon tube or other type of pressure element.
 - 4. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 5. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
 - 6. Pointer: Dark-colored metal.
 - 7. Window: Glass.
 - 8. Ring: Stainless steel.
 - 9. Connector Type(s): Union joint, adjustable, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device; with ASME B1.1 screw threads.
 - 10. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
 - 11. Accuracy: Plus or minus 1 percent of scale range.
- B. Direct-Mounted, Plastic-Case, Vapor-Actuated Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Sealed type, plastic 4-1/2-inch nominal diameter.
 - 3. Element: Bourdon tube or other type of pressure element.
 - 4. Movement: Mechanical, with link to pressure element and connection to pointer.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0519 - 2

- 5. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
- 6. Pointer: Dark-colored metal.
- 7. Window: Glass.
- 8. Ring: Metal.
- 9. Connector Type(s): Union joint, adjustable, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device with ASME B1.1 screw threads.
- 10. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
- 11. Accuracy: Plus or minus 1 percent of scale range.
- C. Remote-Mounted, Metal-Case, Vapor-Actuated Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Sealed type, cast aluminum or drawn steel 4-1/2-inch nominal diameter with flange and holes for panel mounting.
 - 3. Element: Bourdon tube or other type of pressure element.
 - 4. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 5. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
 - 6. Pointer: Dark-colored metal.
 - 7. Window: Glass.
 - 8. Ring: Stainless steel.
 - 9. Connector Type(s): Union joint, with ASME B1.1 screw threads.
 - 10. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
 - 11. Accuracy: Plus or minus 1percent of scale range.
- D. Remote-Mounted, Plastic-Case, Vapor-Actuated Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Sealed type, plastic 4-1/2-inch nominal diameter with flange and holes for panel mounting.
 - 3. Element: Bourdon tube or other type of pressure element.
 - 4. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 5. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
 - 6. Pointer: Dark-colored metal.
 - 7. Window: Glass.
 - 8. Ring: Metal.
 - 9. Connector Type(s): Union joint, threaded, with ASME B1.1 screw threads.
 - 10. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
 - 11. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

22 0519 - 3

2.3 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Cast aluminum; 6-inch nominal size.
 - 3. Case Form: Back angle unless otherwise indicated.
 - 4. Tube: Glass with magnifying lens and blue or red organic liquid.
 - 5. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
 - 6. Window: Glass.
 - 7. Stem: Aluminum or brass and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
 - 8. Connector: 3/4 inch, with ASME B1.1 screw threads.
 - 9. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.
- B. Plastic-Case, Compact-Style, Liquid-in-Glass Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Plastic;6-inch nominal size.
 - 3. Case Form: Back angle unless otherwise indicated.
 - 4. Tube: Glass with magnifying lens and blue or red organic liquid.
 - 5. Tube Background: Nonreflective with permanently etched scale markings graduated in deg F and deg C.
 - 6. Window: Glass or plastic.
 - 7. Stem: Aluminum or brass and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
 - 8. Connector: 3/4 inch with ASME B1.1 screw threads.
 - 9. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.
- C. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Cast aluminum 7-inch nominal size unless otherwise indicated.
 - 3. Case Form: Adjustable angle unless otherwise indicated.
 - 4. Tube: Glass with magnifying lens and blue or red organic liquid.
 - 5. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
 - 6. Window: Glass.
 - 7. Stem: Aluminum and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
 - 8. Connector: 1-1/4 inches with ASME B1.1 screw threads.
 - 9. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.
- D. Plastic-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - 1. Standard: ASME B40.200.
 - 2. Case: Plastic 7-inch nominal size unless otherwise indicated.
 - 3. Case Form: Adjustable angle unless otherwise indicated.
 - 4. Tube: Glass with magnifying lens and blue or red organic liquid.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0519 - 4

- 5. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
- 6. Window: Glass.
- 7. Stem: Stainless steel and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
- 8. Connector: 1-1/4 inches with ASME B1.1 screw threads.
- 9. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.4 LIGHT-ACTIVATED THERMOMETERS

- A. Direct-Mounted, Light-Activated Thermometers:
 - 1. Case: Metal 7-inch nominal size unless otherwise indicated.
 - 2. Scale(s): Deg F and deg C.
 - 3. Case Form: Adjustable angle
 - 4. Connector: 1-1/4 inches, with ASME B1.1 screw threads.
 - 5. Stem: Aluminum and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
 - 6. Display: Digital.
 - 7. Accuracy: Plus or minus 2 deg F.
- B. Remote-Mounted, Light-Activated Thermometers:
 - 1. Case: Plastic, for wall mounting.
 - 2. Scale(s): Deg F and deg C.
 - 3. Sensor: Bulb and thermister wire.
 - a. Design for Thermowell Installation: Bare stem.
 - 4. Display: Digital.
 - 5. Accuracy: Plus or minus 2 deg F.

2.5 THERMOWELLS

- A. Thermowells:
 - 1. Standard: ASME B40.200.
 - 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 - 3. Material for Use with Copper Tubing: CNR or CUNI.
 - 4. Material for Use with Steel Piping: CRES CSA.
 - 5. Type: Stepped shank unless straight or tapered shank is indicated.
 - 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 - 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 - 8. Bore: Diameter required to match thermometer bulb or stem.
 - 9. Insertion Length: Length required to match thermometer bulb or stem.
 - 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 - 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0519 - 5

2.6 PRESSURE GAGES

- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Standard: ASME B40.100.
 - 2. Case: Liquid-filled or Sealed; cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
 - 3. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 4. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 5. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi and kPa.
 - 7. Pointer: Dark-colored metal.
 - 8. Window: Glass.
 - 9. Ring: Stainless steel.
 - 10. Accuracy: plus or minus 2 percent of middle half of scale range.
- B. Direct-Mounted, Plastic-Case, Dial-Type Pressure Gages:
 - 1. Standard: ASME B40.100.
 - 2. Case: Sealed type; plastic; 4-1/2-inch nominal diameter.
 - 3. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 4. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 5. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi and kPa.
 - 7. Pointer: Dark-colored metal.
 - 8. Window: Glass.
 - 9. Accuracy: plus or minus 2 percent of middle half of scale range.
- C. Remote-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Standard: ASME B40.100.
 - 2. Case: Liquid-filled or Sealed type; cast aluminum or drawn steel; 4-1/2-inch nominal diameter with flange and holes for panel mounting.
 - 3. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 4. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 5. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi and kPa.
 - 7. Pointer: Dark-colored metal.
 - 8. Window: Glass.
 - 9. Ring: Stainless steel.
 - 10. Accuracy: plus or minus 2 percent of middle half of scale range.
- D. Remote-Mounted, Plastic-Case, Dial-Type Pressure Gages:
 - 1. Standard: ASME B40.100.
 - 2. Case: Sealed type; plastic; 4-1/2-inch nominal diameter with flange and holes for panel mounting.
 - 3. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 4. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 5. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi and kPa.
 - 7. Pointer: Dark-colored metal.
 - 8. Window: Glass.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0519 - 6

9. Accuracy: plus or minus 2 percent of middle half of scale range.

2.7 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and surge-dampening device. Include extension for use on insulated piping.
- B. Valves: Brass ball, with NPS 1/4 or NPS 1/2 ASME B1.20.1 pipe threads.

2.8 TEST PLUGS

- A. Description: Test-station fitting made for insertion into piping tee fitting.
- B. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- C. Thread Size: NPS 1/4 or NPS 1/2 ASME B1.20.1 pipe thread.
- D. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- E. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

2.9 TEST-PLUG KITS

- A. Furnish one test-plug kit(s) containing one thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.
- B. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.
- C. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F.
- D. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch diameter dial and probe. Dial range shall be at least 0 to 200 psig.
- E. Carrying Case: Metal or plastic, with formed instrument padding.

2.10 SIGHT FLOW INDICATORS

- A. Description: Piping inline-installation device for visual verification of flow.
- B. Construction: Bronze or stainless-steel body, with sight glass and ball, flapper, or paddle wheel indicator, and threaded or flanged ends.
- C. Minimum Pressure Rating: 150 psig.
- D. Minimum Temperature Rating: 200 deg F.
- E. End Connections for NPS 2 and Smaller: Threaded.

22 0519 - 7

F. End Connections for NPS 2-1/2 and Larger: Flanged.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.
- G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- H. Install remote-mounted pressure gages on panel.
- I. Install valve and snubber in piping for each pressure gage for fluids.
- J. Install test plugs in piping tees.
- K. Install thermometers in the following locations:
 - 1. Inlet and outlet of each water heater.
 - 2. Inlets and outlets of each domestic water heat exchanger.
 - 3. Inlet and outlet of each domestic hot-water storage tank.
 - 4. Inlet and outlet of each remote domestic water chiller.
- L. Install pressure gages in the following locations:
 - 1. Building water service entrance into building.
 - 2. Inlet and outlet of each pressure-reducing valve.
 - 3. Suction and discharge of each domestic water pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0519 - 8

3.4 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F.
- B. Scale Range for Domestic Cold-Water Piping: 0 to 150 deg F.
- C. Scale Range for Domestic Cold-Water Piping: 30 to 240 deg F
- D. Retain one or more of first three paragraphs below. If retaining more than one scale range, indicate location of each on Drawings.
- E. Scale Range for Domestic Hot-Water Piping: 0 to 250 deg.
- F. Scale Range for Domestic Hot-Water Piping: 20 to 240 deg F.
- G. Scale Range for Domestic Hot-Water Piping: 30 to 240 deg F.
- H. Scale Range for Domestic Cooled-Water Piping: 0 to 100 deg.
- I. Scale Range for Domestic Cooled-Water Piping: 0 to 150 deg F.

3.5 PRESSURE-GAGE SCALE-RANGE SCHEDULE

- A. Scale Range for Water Service Piping: 0 to 100 psi.
- B. Scale Range for Water Service Piping: 0 to 160 psi.
- C. Scale Range for Water Service Piping: 0 to 200 psi.
- D. Scale Range for Domestic Water Piping: 0 to 100 psi.
- E. Scale Range for Domestic Water Piping: 0 to 160.
- F. Scale Range for Domestic Water Piping: 0 to 200 psi.
- G. Scale Range for Domestic Water Piping: 0 to 300 psi.

END OF SECTION

22 0519 - 9

22 0519 - 10

SECTION 22 0523

GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze angle valves.
 - 2. Bronze ball valves.
 - 3. Iron, single-flange butterfly valves.
 - 4. Bronze swing check valves.
 - 5. Iron swing check valves.
 - 6. Iron gate valves.
 - 7. Iron globe valves.
 - 8. Chainwheels.
- B. Related Sections:
 - 1. Section 22 0553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 - 2. Section 22 1113 "Facility Water Distribution Piping" for valves applicable only to this piping.
 - 3. Section 22 1116 "Domestic Water Piping" for valves applicable only to this piping.
 - 4. Section 22 1513 "General-Service Compressed-Air Piping" for valves applicable only to this piping.
 - 5. Section 22 6113 "Compressed-Air Piping for Laboratory and Healthcare Facilities" for valves applicable only to this piping.
 - 6. Section 22 6213 "Vacuum Piping for Laboratory and Healthcare Facilities" for valves applicable only to this piping.
 - 7. Section 22 6313 "Gas Piping for Laboratory and Healthcare Facilities" for valves applicable only to this piping.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0523 - 1

- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0523 - 2

- B. Valve Sizes: Same as upstream piping unless otherwise indicated.
- C. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 - 2. Handwheel: For valves other than quarter-turn types.
 - 3. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
 - 4. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.
- D. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 1. Gate Valves: With rising stem.
 - 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 3. Butterfly Valves: With extended neck.
- E. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Grooved: With grooves according to AWWA C606.
 - 3. Solder Joint: With sockets according to ASME B16.18.
 - 4. Threaded: With threads according to ASME B1.20.1.
- F. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE ANGLE VALVES

- A. Class 125, Bronze Angle Valves with Nonmetallic Disc:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>American Valve, Inc</u>.
 - b. <u>NIBCO INC</u>.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
 - d. Ends: Threaded.
 - e. Stem: Bronze.
 - f. Disc: PTFE or TFE.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron, bronze, or aluminum.

2.3 BRONZE BALL VALVES

A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0523 - 3

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>American Valve, Inc</u>.
 - b. <u>Conbraco Industries, Inc.; Apollo Valves</u>.
 - c. Crane Co.; Crane Valve Group; Crane Valves.
 - d. Hammond Valve.
 - e. <u>Milwaukee Valve Company</u>.
 - f. <u>NIBCO INC</u>.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.
 - h. Stem: Bronze.
 - i. Ball: Chrome-plated brass.
 - j. Port: Full.

2.4 IRON, SINGLE-FLANGE BUTTERFLY VALVES

- A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Conbraco Industries, Inc.; Apollo Valves</u>.
 - b. <u>Cooper Cameron Valves; a division of Cooper Cameron Corporation</u>.
 - c. Crane Co.; Crane Valve Group; Jenkins Valves.
 - d. Crane Co.; Crane Valve Group; Stockham Division.
 - e. <u>Hammond Valve</u>.
 - f. <u>Milwaukee Valve Company</u>.
 - g. <u>NIBCO INC</u>.
 - h. <u>Watts Regulator Co.; a division of Watts Water Technologies, Inc</u>.
 - 2. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 - e. Seat: EPDM.
 - f. Stem: One- or two-piece stainless steel.
 - g. Disc: Aluminum bronze.

2.5 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0523 - 4

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Hammond Valve.
 - e. <u>Milwaukee Valve Company</u>.
 - f. <u>NIBCO INC</u>.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Description:
 - a. Standard: MSS SP-80, Type 4.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: PTFE or TFE.

2.6 IRON SWING CHECK VALVES

- A. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Crane Co.; Crane Valve Group; Crane Valves</u>.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. Hammond Valve.
 - d. NIBCO INC.
 - e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Clear or full waterway.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged.
 - f. Trim: Composition.
 - g. Seat Ring: Bronze.
 - h. Disc Holder: Bronze.
 - i. Disc: PTFE or TFE.
 - j. Gasket: Asbestos free.

2.7 IRON GATE VALVES

- A. Class 125, NRS, Iron Gate Valves:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:

22 0523 - 5

- a. <u>Crane Co.; Crane Valve Group; Crane Valves</u>.
- b. <u>Crane Co.; Crane Valve Group; Jenkins Valves</u>.
- c. Crane Co.; Crane Valve Group; Stockham Division.
- d. Hammond Valve.
- e. <u>Milwaukee Valve Company</u>.
- f. <u>NIBCO INC</u>.
- g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Description:
 - a. Standard: MSS SP-70, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - d. Ends: Flanged.
 - e. Trim: Bronze.
 - f. Disc: Solid wedge.
 - g. Packing and Gasket: Asbestos free.

2.8 IRON GLOBE VALVES

- A. Class 125, Iron Globe Valves:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Crane Co.; Crane Valve Group; Crane Valves</u>.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Hammond Valve.
 - e. <u>Milwaukee Valve Company</u>.
 - f. <u>NIBCO INC</u>.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-85, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - d. Ends: Flanged.
 - e. Trim: Bronze.
 - f. Packing and Gasket: Asbestos free.

2.9 CHAINWHEELS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. <u>Babbitt Steam Specialty Co.</u>
 - 2. Roto Hammer Industries.
 - 3. <u>Trumbull Industries</u>.
- B. Description: Valve actuation assembly with sprocket rim, brackets, and chain.

22 0523 - 6

- 1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
- 2. Attachment: For connection to butterfly valve stems.
- 3. Sprocket Rim with Chain Guides: Ductile iron, of type and size required for valve.
- 4. Chain: Hot-dip, galvanized steel, of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install chainwheels on operators for butterfly, gate, and globe valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.
- F. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0523 - 7

- 1. Shutoff Service: Ball valves.
- 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
- 3. Throttling Service: Globe , ball, or butterfly valves.
- 4. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with nonmetallic disc.
 - b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or with spring.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valveend option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valveend option is indicated in valve schedules below.
 - 3. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 4. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 5. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Bronze Angle Valves: Class 125, nonmetallic disc.
 - 3. Ball Valves: Two piece, full port, bronze with bronze trim.
 - 4. Bronze Swing Check Valves: Class 125, nonmetallic disc.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 - 2. Iron, Single-Flange Butterfly Valves: 200 CWP, EPDM seat, aluminum-bronze disc.
 - 3. Iron Swing Check Valves: Class 125, nonmetallic-to-metal seats.
 - 4. Iron Gate Valves: Class 125, NRS.
 - 5. Iron Globe Valves: Class 125.

END OF SECTION

SECTION 22 0529

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Fiberglass pipe hangers.
 - 4. Metal framing systems.
 - 5. Fiberglass strut systems.
 - 6. Thermal-hanger shield inserts.
 - 7. Fastener systems.
 - 8. Pipe stands.
 - 9. Pipe positioning systems.
 - 10. Equipment supports.

B. Related Sections:

- 1. Section 05 5000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
- 2. Section 22 0516 "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 **PERFORMANCE REQUIREMENTS**

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0529 - 1

- 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
- 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Fiberglass strut systems.
 - 4. Pipe stands.
 - 5. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0529 - 2

- 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
- 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Stainless-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.
- C. Copper Pipe Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel or stainless steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 - 2. Standard: MFMA-4.
 - 3. Channels: Continuous slotted steel channel with inturned lips.
 - 4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
 - 6. Metallic Coating: Hot-dipped galvanized.
 - 7. Paint Coating: Epoxy.
 - 8. Plastic Coating: Epoxy.
- B. Non-MFMA Manufacturer Metal Framing Systems:
 - 1. Description: Shop- or field-fabricated pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 - 2. Standard: Comply with MFMA-4.
 - 3. Channels: Continuous slotted steel channel with inturned lips.
 - 4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
 - 6. Coating: Zinc.

2.4 FIBERGLASS STRUT SYSTEMS

A. Description: Shop- or field-fabricated pipe-support assembly similar to MFMA-4 for supporting 17-13 OSU, College of Osteopathic Medicine at Cherokee Nation 22 0529 - 3 Childers Architect PLUMBING PIPING AND 07-26-19 multiple parallel pipes.

- 1. Channels: Continuous slotted fiberglass channel with inturned lips.
- 2. Channel Nuts: Fiberglass nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
- 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.

2.5 THERMAL-HANGER SHIELD INSERTS

- A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.
- B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.
- C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.7 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
- D. High-Type, Single-Pipe Stand:
 - 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 2. Base: Stainless steel.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation 2 Childers Architect 07-26-19

22 0529 - 4

- 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
- 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainlesssteel, roller-type pipe support.
- E. High-Type, Multiple-Pipe Stand:
 - 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 2. Bases: One or more; plastic.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structuralsteel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.8 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.9 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbonsteel shapes.

2.10 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation22 05
Childers Architect07-26-19

22 0529 - 5

grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

- 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
- 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-69 and MSS SP-89. Install hangers and attachments as required to properly support piping from building structure.
- D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- E. Fiberglass Strut System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled fiberglass struts.
- F. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- G. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- H. Pipe Stand Installation:
 - 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 - Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 07 7200 "Roof Accessories" for curbs.
- I. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.
- J. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- K. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- L. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- M. Install lateral bracing with pipe hangers and supports to prevent swaying.
- N. Install building attachments within concrete slabs or attach to structural steel. Install additional

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0529 - 6

attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

- O. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- P. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- Q. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 - 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 - 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

17-13 OSU, College of Osteopathic Medicine at	
Cherokee Nation	
Childers Architect	
07-26-19	

22 0529 - 7

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 09 9113 "Exterior Painting." Section 09 9123 "Interior Painting." Section 09 9600 "High-Performance Coatings."
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation22 0529 - 8Childers Architect07-26-19

piping system Sections.

- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and metal framing systems and attachments for general service applications.
- F. Use stainless-steel pipe hangers and fiberglass strut systems and stainless-steel attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal-hanger shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F pipes NPS 4 to NPS 24 requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36 requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow offcenter closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
 - 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
 - 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 - 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steelpipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0529 - 9

- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0529 - 10

- 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
- 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0529 - 11

- Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- R. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
- S. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION

SECTION 22 0553

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Stencils.
 - 5. Valve tags.
 - 6. Warning tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Letter Color: White.
 - 3. Background Color: Black.
 - 4. Minimum Label Size: Length and width vary for required label content, but not less than

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0553 - 1

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT 2-1/2 by 3/4 inch.

- 5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- 6. Fasteners: Stainless-steel rivets or self-tapping screws.
- 7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: White.
 - 3. Background Color: Black.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: White.
- C. Background Color: Red.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0553 - 2

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.4 STENCILS

- A. Stencils for Piping:
 - 1. Lettering Size: Size letters according to ASME A13.1 for piping.
 - 2. Stencil Material: Aluminum.
 - 3. Stencil Paint: Exterior, gloss, acrylic enamel in colors complying with recommendations in ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.
 - 4. Identification Paint: Exterior, acrylic enamel in colors according to ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.

2.5 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2inch numbers.
 - 1. Tag Material: Brass, 0.032-inch aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link chain or beaded chain or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

22 0553 - 3

2.6 WARNING TAGS

- A. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.
 - 1. Size: 3 by 5-1/4 inches minimum.
 - 2. Fasteners: Reinforced grommet and wire or string.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Safety yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

- A. Piping Color Coding: Painting of piping is specified in Section 09 9123 "Interior Painting." or Section 09 9600 "High-Performance Coatings."
- B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1on each piping system.
 - 1. Identification Paint: Use for contrasting background.
 - 2. Stencil Paint: Use for pipe marking.
- C. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0553 - 4

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

- 1. Near each valve and control device.
- 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
- 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
- 4. At access doors, manholes, and similar access points that permit view of concealed piping.
- 5. Near major equipment items and other points of origination and termination.
- 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
- 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.
- E. Pipe Label Color Schedule:
 - 1. Low-Pressure Compressed Air Piping:
 - a. Background: Safety blue.
 - b. Letter Colors: White.
 - 2. High-Pressure Compressed Air Piping:
 - a. Background: Safety blue.
 - b. Letter Colors: White.
 - 3. Domestic Water Piping
 - a. Background: Safety green.
 - b. Letter Colors: White.
 - 4. Sanitary Waste Piping:
 - a. Background Color: Safety black.
 - b. Letter Color: White.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Cold Water: 2 inches round.
 - b. Hot Water: 2 inches round.
 - c. Low-Pressure Compressed Air: 2 inches round.
 - d. High-Pressure Compressed Air: 2 inches round.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0553 - 5

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

- 2. Valve-Tag Colors:
 - a. Cold Water: Safety green.
 - b. Hot Water: Safety green.
 - c. Low-Pressure Compressed Air: Safety blue.
 - d. High-Pressure Compressed Air: Natural.
- 3. Letter Colors:
 - a. Cold Water: White.
 - b. Hot Water:[White.
 - c. Low-Pressure Compressed Air: White.
 - d. High-Pressure Compressed Air: White.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION

SECTION 22 0716

PLUMBING EQUIPMENT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following plumbing equipment:
 - 1. Domestic water boiler breechings.
 - 2. Domestic water heat exchangers.
 - 3. Domestic water converters.
 - 4. Domestic water, hot-water pumps.
 - 5. Domestic water storage tanks.
 - 6. Domestic water filter housings.
- B. Related Sections:
 - 1. Section 22 0719 "Plumbing Piping Insulation."

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied, if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail removable insulation at equipment connections and access panels.
 - 4. Detail application of field-applied jackets.
 - 5. Detail application at linkages of control devices.
 - 6. Detail field application for each equipment type.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 - 1. Sheet Form Insulation Materials: 12 inches square.
 - 2. Sheet Jacket Materials: 12 inches square.
 - 3. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with equipment Installer for equipment insulation application.
- C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. The material descriptions listed in the section may not all be used on this project. Refer to the Insulation Material Schedules on the drawings for the specific application for each product or material. Products not shown on the schedule for the specific application may not be substituted without pre-approval from the Engineer. Where there is a conflict between the drawing schedule and specifications, the drawing schedule shall take precedent.
- B. Comply with requirements in "Domestic Water Boiler Breeching Insulation Schedule" and "Equipment Insulation Schedule" articles for where insulating materials shall be applied.
- C. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- D. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- E. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- F. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- G. Calcium Silicate:
 - 1. Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.
- H. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Block Insulation: ASTM C 552, Type I.
 - 2. Special-Shaped Insulation: ASTM C 552, Type III.
 - 3. Board Insulation: ASTM C 552, Type IV.
 - 4. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 5. Preformed Pipe Insulation with Factory-Applied ASJ-SSL: Comply with ASTM C 552, Type II, Class 2.
 - 6. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- I. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
- J. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- K. High-Temperature, Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type V, without factory-applied jacket.
- L. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For equipment applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

- M. High-Temperature, Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type III, without factory-applied jacket.
- N. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factoryapplied jacket requirements are specified in "Factory-Applied Jackets" Article.
- O. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied FSK jacket complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- P. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials and Type II, Grade 1 for sheet materials.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
- B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
- C. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Calcium Silicate Adhesive: Fibrous, sodium-silicate-based adhesive with a service temperature range of 50 to 800 deg F.
- C. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
- D. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
- E. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
- F. Grade A for bonding insulation jacket lap seams and joints.
- G. PVC Jacket Adhesive: Compatible with PVC jacket.

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0716 - 4

PLUMBING EQUIPMENT INSULATION

- 1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
- 2. Service Temperature Range: Minus 20 to plus 180 deg F.
- 3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
- 4. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
 - 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 - 2. Service Temperature Range: 0 to 180 deg F.
 - 3. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 4. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 - 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 2. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 3. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 4. Color: White.
- E. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch) dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Solids Content: 60 percent by volume and 66 percent by weight.
 - 4. Color: White.

2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a low VOC content.
 - 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fireresistant lagging cloths over insulation.
 - 3. Service Temperature Range: 0 to plus 180 deg F.
 - 4. Color: White.

2.6 SEALANTS

- A. Joint Sealants for Cellular-Glass Products:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Permanently flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 4. Color: White or gray.
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: Aluminum.
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0716 - 5

PLUMBING EQUIPMENT INSULATION 4. Color: White.

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. PVDC Jacket for Indoor Applications: 4-mil thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perm when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 - 5. PVDC Jacket for Outdoor Applications: 6-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perm when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 - 6. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Fabric: Approximately 6 oz./sq. yd. with a thread count of 5 strands by 5 strands/sq. in.) for covering equipment.
- B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. in a Leno weave, for equipment.

2.9 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd..

2.10 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Adhesive: As recommended by jacket material manufacturer.
 - 2. Color: White or Color as selected by Architect.
 - 3. Factory-fabricated tank heads and tank side panels.
- C. Metal Jacket:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0716 - 6

PLUMBING EQUIPMENT INSULATION

- 1. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing or factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft.
 - d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
- 2. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 - a. Material, finish, and thickness are indicated in field-applied jacket schedules.
 - b. Moisture Barrier for Indoor Applications: 1-mil thick, heat-bonded polyethylene and kraft paper.
 - c. Moisture Barrier for Outdoor Applications: 3-mil thick, heat-bonded polyethylene and kraft paper.

2.11 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 11.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Width: 3 inches.l
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Width: 2 inches.
 - 2. Thickness: 6 mils.
 - 3. Adhesion: 64 ounces force/inch in width.
 - 4. Elongation: 500 percent.
 - 5. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Width: 2 inches.
 - 2. Thickness: 3.7 mils.
 - 3. Adhesion: 100 ounces force/inch in width.
 - 4. Elongation: 5 percent.
 - 5. Tensile Strength: 34 lbf/inch in width.
- E. PVDC Tape: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Width: 3 inches.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

- 2. Film Thickness: 6 mils.
- 3. Adhesive Thickness: 1.5 mils.
- 4. Elongation at Break: 145 percent.
- 5. Tensile Strength: 55 lbf/inch in width.

2.12 SECUREMENTS

A. Bands:

- 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 3/4 inch wide with wing seal or closed seal.
- 2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.
- 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch diameter shank, length to suit depth of insulation indicated.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - b. Spindle: Stainless steel, fully annealed, 0.106-inch diameter shank, length to suit depth of insulation indicated.
 - c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 4. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 - b. Spindle: Nylon, 0.106-inch diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 - c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 5. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.

a.

- b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
- c. Spindle: Stainless steel, fully annealed, 0.106-inch diameter shank, length to suit depth of insulation indicated.

- d. Adhesive-backed base with a peel-off protective cover.
- 6. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch thick, stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 7. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inchthick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.
- D. Wire: 0.062-inch soft-annealed, stainless steel.

2.13 CORNER ANGLES

- A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.
- C. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

22 0716 - 9

- Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:

22 0716 - 10

PLUMBING EQUIPMENT INSULATION

- 1. Draw jacket tight and smooth.
- 2. Cover circumferential joints with 3-inch wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- O. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

- A. Mineral-Fiber, Pipe, and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
 - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 - 3. Protect exposed corners with secured corner angles.
 - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 - d. Do not over compress insulation during installation.

- e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
- f. Impale insulation over anchor pins and attach speed washers.
- g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
- 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
- 7. Stagger joints between insulation layers at least 3 inches.
- 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
- 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
- 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
- B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.
 - 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
 - 2. Seal longitudinal seams and end joints.
- C. Insulation Installation on Pumps:
 - 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
 - 2. Fabricate boxes from stainless steel, at least 0.050 inch thick.
 - 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.5 INSTALLATION OF CALCIUM SILICATE INSULATION

- A. Insulation Installation on Domestic Water Boiler Breechings:
 - 1. Secure single-layer insulation with stainless-steel bands at 12-inch intervals and tighten bands without deforming insulation material.
 - 2. Install two-layer insulation with joints tightly butted and staggered at least 3 inches. Secure inner layer with wire spaced at 12-inch intervals. Secure outer layer with stainless-steel bands at 12-inch intervals.

3. On exposed applications without metal jacket, finish insulation surface with a skim coat of mineral-fiber, hydraulic-setting cement. When cement is dry, apply flood coat of lagging adhesive and press on one layer of glass cloth. Overlap edges at least 1 inch. Apply finish coat of lagging adhesive over glass cloth. Thin finish coat to achieve smooth, uniform finish.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
- E. Where PVDC jackets are indicated, install as follows:
 - Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. 33-1/2-inch circumference limit allows for 2-inch overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
 - 2. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.8 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 9113 "Exterior Painting" and Section 09 9123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Inspect field-insulated equipment, randomly selected by Architect, by removing fieldapplied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 DOMESTIC WATER BOILER BREECHING INSULATION SCHEDULE

- A. Round, exposed breeching and connector insulation shall be one of the following:
 - 1. Calcium Silicate: 4 inches thick.
 - 2. High-Temperature Mineral-Fiber Blanket: 3 inches thick and 3-lb/cu. ft. nominal density.
 - 3. High-Temperature Mineral-Fiber Board: 3 inches thick and 6-lb/cu. ft. nominal density.
- B. Round, concealed breeching and connector insulation shall be one of the following:
 - 1. Calcium Silicate: 4 inches thick.
 - 2. High-Temperature Mineral-Fiber Blanket: 3 inches thick and 3-lb/cu. ft. nominal density.
 - 3. High-Temperature Mineral-Fiber Board: 3 inches thick and 6-lb/cu. ft. nominal density.
- C. Rectangular, exposed breeching and connector insulation shall be one of the following:
 - 1. Calcium Silicate: 4 inches thick.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0716 - 14

PLUMBING EQUIPMENT INSULATION

- 2. High-Temperature Mineral-Fiber Blanket: 3 inches thick and 3-lb/cu. ft. nominal density.
- 3. High-Temperature Mineral-Fiber Board: 3 inches thick and 6-lb/cu. ft. nominal density.
- D. Rectangular, concealed breeching and connector insulation shall be one of the following:
 - 1. Calcium Silicate: 4 inches thick.
 - 2. High-Temperature Mineral-Fiber Blanket: 3 inches thick and 3-lb/cu. ft. nominal density.
 - 3. High-Temperature Mineral-Fiber Board: 3 inches thick and 6-lb/cu. ft. nominal density.

3.11 EQUIPMENT INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
- B. Insulate indoor and outdoor equipment that is not factory insulated.
- C. Heat-exchanger (water-to-water for domestic water heating service) insulation shall be one of the following:
 - 1. Calcium Silicate: 3 inches thick.
 - 2. Cellular Glass: 3 inches thick.
 - 3. Mineral-Fiber Blanket: 2 inches thick and 6-lb/cu. ft. nominal density.
 - 4. Mineral-Fiber Board: 6-lb/cu. ft. nominal density.
 - 5. Mineral-Fiber Pipe and Tank: 2 inches thick.
 - 6. Mineral-Fiber Preformed Pipe Insulation, Type I: 2 inches thick.
- D. Steam-to-hot-water converter insulation shall be one of the following:
 - 1. Calcium Silicate: inches thick.
 - 2. Cellular Glass: 3 inches thick.
 - 3. Mineral-Fiber Blanket: 2 inches thick and 6-lb/cu. ft. nominal density.
 - 4. Mineral-Fiber Board: 6-lb/cu. ft. nominal density.
 - 5. Mineral-Fiber Pipe and Tank: 2 inches thick.
 - 6. Mineral-Fiber Preformed Pipe Insulation, Type I: 2 inches thick.
- E. Domestic water pump insulation shall be one of the following:
 - 1. Cellular Glass: 2 inches thick.
 - 2. Mineral-Fiber Blanket: 1 inch thick 6-lb/cu. Ft nominal density.
 - 3. Mineral-Fiber Board: 1 inch thick and 6-lb/cu. ft. nominal density.
- F. Domestic chilled-water (potable) pump insulation shall be one of the following:
 - 1. Cellular Glass: 3 inches thick.
 - 2. Mineral-Fiber Blanket: 2 inches thick and 6-lb/cu. ft. nominal density.
 - 3. Mineral-Fiber Board: 2 inches thick and 6-lb/cu. ft. nominal density.
- G. Domestic hot-water pump insulation shall be one of the following:
 - 1. Cellular Glass: 2 inches thick.
 - 2. Mineral-Fiber Blanket: 1 inch thick and 6-lb/cu. ft. nominal density.
 - 3. Mineral-Fiber Board: 1 inch 6-lb/cu. ft. nominal density.

- H. Domestic water, domestic chilled-water (potable), and domestic hot-water hydropneumatic tank insulation shall be one of the following:
 - 1. Cellular Glass: 1-1/2 inches thick.
 - 2. Flexible Elastomeric: 1 inch thick.
 - 3. Mineral-Fiber Blanket: 1 thick and 6-lb/cu. ft. nominal density.
 - 4. Mineral-Fiber Board: 1 inch thick and 6-lb/cu. Ft nominal density.
 - 5. Mineral-Fiber Pipe and Tank: 1 inch thick.
 - 6. Polyolefin: 1 inch thick.
- I. Domestic hot-water storage tank insulation shall be one of the following, of thickness to provide an R-value of 12.5.
 - 1. Cellular glass.
 - 2. Mineral-Fiber Blanket: 6-lb/cu. ft. nominal density.
 - 3. Mineral-Fiber Board: 6-lb/cu. ft. nominal density.
 - 4. Mineral-fiber pipe and tank.
- J. Domestic water storage tank insulation shall be one of the following:
 - 1. Cellular Glass: 2 inches thick.
 - 2. Flexible Elastomeric: 1 inch thick.
 - 3. Mineral-Fiber Blanket: 1 inch thick and 6-lb/cu. ft. nominal density.
 - 4. Mineral-Fiber Board: 1 inch thick and 6-lb/cu. ft. nominal density.
 - 5. Mineral-Fiber Pipe and Tank: 1 inch thick.
 - 6. Polyolefin: 1 inch thick.
- K. Domestic chilled-water (potable) storage tank insulation shall be one of the following:
 - 1. Cellular Glass: 2 inches thick.
 - 2. Flexible Elastomeric: 1 inch thick.
 - 3. Mineral-Fiber Blanket: 1 inch thick 6-lb/cu. ft. nominal density.
 - 4. Mineral-Fiber Board: 1 inch thick and 6-lb/cu. ft. nominal density.
 - 5. Mineral-Fiber Pipe and Tank: 1 inch thick.
 - 6. Polyolefin: 1 inch thick.
- L. Domestic water filter-housing insulation shall be one of the following:
 - 1. Cellular Glass: 3 inches thick.
 - 2. Mineral-Fiber Blanket: 2 inches thick and 6-lb/cu. ft. nominal density.
 - 3. Mineral-Fiber Board: 2 inches thick and 6-lb/cu. ft. nominal density.
 - 4. Mineral-Fiber Pipe and Tank: 2 inches thick.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Equipment, Concealed:
 - 1. PVC, Color-Coded by System: 30 mils thick.
 - 2. Aluminum, Stucco Embossed: 0.020 inch thick.
 - 3. Painted Aluminum, Embossed: 0.020 inch thick.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0716 - 16

PLUMBING EQUIPMENT INSULATION

- 4. Stainless Steel, Type 304 or Type 316, Stucco Embossed: 0.020 inch 0.024 inch thick.
- D. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches
 - 1. None.
 - 2. PVC, Color-Coded by System: 30 mils thick.
 - 3. Aluminum, Stucco Embossed: 0.032 inch thick.
 - 4. Painted Aluminum, Stucco Embossed: 0.032 inch thick.
 - 5. Stainless Steel, Type 304 or Type 316, Stucco Embossed: 0.024 inch thick.
- E. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1. Painted Aluminum, Stucco Embossed: 0.032 inch thick.
 - 2. Stainless Steel, Type 304 or Type 316, Stucco Embossed: 0.024 inch thick.

3.13 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Equipment, Concealed:
 - 1. PVC, Color-Coded by System: 30 mils thick.
 - 2. Aluminum, Stucco Embossed: 0.032 inch thick.
 - 3. Painted Aluminum, Stucco Embossed 0.032 inch thick.
 - 4. Stainless Steel, Type 304 or Type 316, Stucco Embossed: 0.024 inch thick.
- D. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:
 - 1. Aluminum, Stucco Embossed with Z-Shaped Locking Seam: 0.032 inch thick.
 - 2. Stainless Steel, Type 304 or Type 316, Stucco Embossed with Z-Shaped Locking Seam: 0.024 inch thick.
- E. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1. Aluminum, Stucco Embossed: 0.032 inch thick.
 - 2. Stainless Steel, Type 304 or Type 316, Stucco Embossed 0.024 inch thick.

END OF SECTION

22 0716 - 18

SECTION 22 0719

PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Domestic cold-water piping.
 - 2. Domestic hot-water piping.
 - 3. Domestic recirculating hot-water piping.
 - 4. Domestic chilled-water piping for drinking fountains.
 - 5. Sanitary waste piping exposed to freezing conditions.
 - 6. Storm-water piping exposed to freezing conditions.
 - 7. Roof drains and rainwater leaders.
 - 8. Supplies and drains for handicap-accessible lavatories and sinks.
- B. Related Sections:
 - 1. Section 22 0716 "Plumbing Equipment Insulation."

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 - 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 0719 - 1

PLUMBING PIPING INSULATION

- 2. Jacket Materials for Pipe: 12 inches long by NPS 2.
- 3. Sheet Jacket Materials: 12 inches square.
- 4. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
- C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.
 - 1. Piping Mockups:
 - a. One 10-foot section of NPS 2 straight pipe.
 - b. One each of a 90-degree threaded, welded, and flanged elbow.
 - c. One each of a threaded, welded, and flanged tee fitting.
 - d. One NPS 2 or smaller valve, and one NPS 2-1/2 or larger valve.
 - e. Four support hangers including hanger shield and insert.
 - f. One threaded strainer and one flanged strainer with removable portion of insulation.
 - g. One threaded reducer and one welded reducer.
 - h. One pressure temperature tap.
 - i. One mechanical coupling.
 - 2. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.

22 0719 - 2

- 3. Notify Architect seven days in advance of dates and times when mockups will be constructed.
- 4. Obtain Architect's approval of mockups before starting insulation application.
- 5. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
- 6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
- 7. Demolish and remove mockups when directed.
- D. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Supply and Drain Protective Shielding Guards: ICC A117.1.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. The product descriptions listed in the section may not all be used on this project. Refer to the Piping Insulation Material Schedules on the drawings for the specific application for each product or material. Products not shown on the schedule for the specific application may not be substituted without pre-approval from the Engineer. Where there is a conflict between the drawing schedule and specifications, the drawing schedule shall take precedent.

22 0719 - 3

PLUMBING PIPING INSULATION

- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Block Insulation: ASTM C 552, Type I.
 - 2. Special-Shaped Insulation: ASTM C 552, Type III.
 - 3. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 4. Preformed Pipe Insulation with Factory-Applied ASJ-SSL: Comply with ASTM C 552, Type II, Class 2.
 - 5. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
- H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- I. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- J. Phenolic:
 - 1. Preformed pipe insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type III, Grade 1.
 - 2. Block insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type II, Grade 1.
 - 3. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
 - 4. Factory-Applied Jacket: ASJ. Requirements are specified in "Factory-Applied Jackets" Article.
- K. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
- B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
- C. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
- C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
- E. Phenolic Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.
- F. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
- G. PVC Jacket Adhesive: Compatible with PVC jacket.

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 4. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
 - 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 - 2. Service Temperature Range: 0 to 180 deg F
 - 3. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 4. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 2. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 3. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 4. Color: White.
- E. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Solids Content: 60 percent by volume and 66 percent by weight.
 - 4. Color: White.

2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fireresistant lagging cloths over pipe insulation.
 - 3. Service Temperature Range: 0 to plus 180 deg F.
 - 4. Color: White.

2.6 SEALANTS

- A. Joint Sealants for Cellular-Glass and Phenolic Products:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Permanently flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 4. Color: White or gray.
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: Aluminum.
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: White.

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.
- B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.

2.9 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd.

2.10 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Adhesive: As recommended by jacket material manufacturer.
 - 2. Color: Color-code jackets based on system or Color as selected by Architect.
 - 3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- C. Metal Jacket:
 - 1. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 3-mil thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 3-mil thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
 - 2. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 - a. Factory cut and rolled to size.
 - b. Material, finish, and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 3-mil thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 3-mil thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.

22 0719 - 7

PLUMBING PIPING INSULATION

- 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
- 3) Tee covers.
- 4) Flange and union covers.
- 5) End caps.
- 6) Beveled collars.
- 7) Valve covers.
- 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- D. Underground Direct-Buried Jacket: 125-mil thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.

2.11 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 11.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Width: 2 inches.
 - 2. Thickness: 6 mils.
 - 3. Adhesion: 64 ounces force/inch in width.
 - 4. Elongation: 500 percent.
 - 5. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Width: 2 inches.
 - 2. Thickness: 3.7 mils.
 - 3. Adhesion: 100 ounces force/inch in width.
 - 4. Elongation: 5 percent.
 - 5. Tensile Strength: 34 lbf/inch in width.

2.12 SECUREMENTS

A. Bands:

- 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 3/4 inch wide with closed seal.
- 2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch closed seal.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.
- C. Wire: 0.062-inch soft-annealed, stainless steel.

2.13 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers
 - 1. Description: Manufactured plastic wraps for covering plumbing fixture hot-water supply and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.
- B. Protective Shielding Piping Enclosures
 - 1. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and coldwater supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.

PLUMBING PIPING INSULATION

- a. For below-ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.

- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 07 8413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 8413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

22 0719 - 13

- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of cellular-glass insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.9 INSTALLATION OF PHENOLIC INSULATION

- A. General Installation Requirements:
 - 1. Secure single-layer insulation with stainless-steel bands at 12-inch intervals and tighten bands without deforming insulation materials.
 - 2. Install 2-layer insulation with joints tightly butted and staggered at least 3 inches. Secure inner layer with 0.062-inch wire spaced at 12-inch intervals. Secure outer layer with stainless-steel bands at 12-inch intervals.
- B. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets with vapor retarders on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- C. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.
- D. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.
- E. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.10 INSTALLATION OF POLYOLEFIN INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Seal split-tube longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install mitered sections of polyolefin pipe insulation.
- 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.11 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.12 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 9113 "Exterior Painting" and Section 09 9123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

- a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.13 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

END OF SECTION

SECTION 22 1116

DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 **RELATED DOCUMENTS**

Α. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- Α. Section Includes:
 - 1. Copper tube and fittings.
 - Ductile-iron pipe and fittings. 2.
 - Galvanized steel pipe and fittings. 3.
 - Stainless-steel piping 4.
 - CPVC piping. 5.
 - PVC pipe and fittings. 6.
 - PP pipe and fittings. 7.
 - 8. Piping joining materials.
 - Encasement for piping. 9.
 - Transition fittings. 10.
 - 11. Dielectric fittings.
- Β. **Related Requirements:**
 - Section 22 1113 "Facility Water Distribution Piping" for water-service piping and water 1. meters outside the building from source to the point where water-service piping enters the building.

1.3 **ACTION SUBMITTALS**

Product Data: For transition fittings and dielectric fittings. Α.

1.4 **INFORMATIONAL SUBMITTALS**

- Α. System purging and disinfecting activities report.
- В. Field quality-control reports.

1.5 **FIELD CONDITIONS**

Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Α. Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:

DOMESTIC WATER PIPING

22 1116 - 1

- 1. Notify Owner's representative no fewer than five days in advance of proposed interruption of water service.
- 2. Do not interrupt water service without Owner's written permission.

PART 2 - PRODUCTS

2.1 **PIPING MATERIALS**

- The product descriptions listed in the section may not all be used on this project. Refer to the Α. Piping Material Schedules on the drawings for the specific application for each product or material. Products not shown on the schedule for the specific application may not be substituted without pre-approval from the Engineer. Where there is a conflict between the drawing schedule and specifications, the drawing schedule shall take precedent.
- Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic В. piping components shall be marked with "NSF-pw."
- C. Comply with NSF Standard 372 for low lead.

COPPER TUBE AND FITTINGS 2.2

- Hard Copper Tube: ASTM B 88, Type L and ASTM B 88, Type M water tube, drawn temper. Α.
- Β. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.
- C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
- D. Wrought-Copper, Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
- E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- F. Copper Unions:
 - 1. MSS SP-123.
 - 2. Cast-copper-alloy, hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal seating surfaces.
 - Solder-joint or threaded ends. 4.
- G. Copper Pressure-Seal-Joint Fittings:
 - Fittings for NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber, O-ring seal in 1. each end.
 - 2. Fittings for NPS 2-1/2 to NPS 4 Cast-bronze or wrought-copper fitting with EPDM-rubber, O-ring seal in each end.
- Η. Copper Push-on-Joint Fittings:
 - Description: 1.
 - Cast-copper fitting complying with ASME B16.18 or wrought-copper fitting a. complying with ASME B 16.22.
 - Stainless-steel teeth and EPDM-rubber, O-ring seal in each end instead of solderb. ioint ends.

- I. Copper-Tube, Extruded-Tee Connections:
 - 1. Description: Tee formed in copper tube according to ASTM F 2014.
- J. Appurtenances for Grooved-End Copper Tubing:
 - 1. Bronze Fittings for Grooved-End, Copper Tubing: ASTM B 75/B 75M copper tube or ASTM B 584 bronze castings.
 - 2. Mechanical Couplings for Grooved-End Copper Tubing:
 - a. Copper-tube dimensions and design similar to AWWA C606.
 - b. Ferrous housing sections.
 - c. EPDM-rubber gaskets suitable for hot and cold water.
 - d. Bolts and nuts.
 - e. Minimum Pressure Rating: 300 psig.

2.3 DUCTILE-IRON PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe:
 - 1. AWWA C151/A21.51, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Standard-Pattern, Mechanical-Joint Fittings:
 - 1. AWWA C110/A21.10, ductile or gray iron.
 - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- C. Compact-Pattern, Mechanical-Joint Fittings:
 - 1. AWWA C153/A21.53, ductile iron.
 - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- D. Push-on-Joint, Ductile-Iron Pipe:
 - 1. AWWA C151/A21.51.
 - 2. Push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
- E. Standard-Pattern, Push-on-Joint Fittings:
 - 1. AWWA C110/A21.10, ductile or gray iron.
 - 2. Gaskets: AWWA C111/A21.11, rubber.
- F. Compact-Pattern, Push-on-Joint Fittings:
 - 1. AWWA C153/A21.53, ductile iron.
 - 2. Gaskets: AWWA C111/A21.11, rubber.
- G. Plain-End, Ductile-Iron Pipe: AWWA C151/A21.51.
- H. Appurtenances for Grooved-End, Ductile-Iron Pipe:

- 1. Fittings for Grooved-End, Ductile-Iron Pipe: ASTM A 47/A 47M, malleable-iron castings or ASTM A 536, ductile-iron castings with dimensions that match pipe.
- Mechanical Couplings for Grooved-End, Ductile-Iron-Piping: 2.
 - AWWA C606 for ductile-iron-pipe dimensions. а
 - Ferrous housing sections. b.
 - EPDM-rubber gaskets suitable for hot and cold water. c.
 - Bolts and nuts. d.
 - Minimum Pressure Rating: e.
 - 1) NPS 14 to NPS 18: 250 psig.
 - 2) NPS 20 to NPS 46: 150 psig.

2.4 GALVANIZED-STEEL PIPE AND FITTINGS

- Α. Galvanized-Steel Pipe:
 - 1. ASTM A 53/A 53M, Type E, Standard Weight.
 - 2. Include ends matching joining method.
- B. Pipe ASTM A 733. ASTM A 53/A 53M Galvanized-Steel Nipples: made of or ASTM A 106/A 106M, Standard Weight, seamless steel pipe with threaded ends.
- C. Galvanized, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- D. Malleable-Iron Unions:
 - 1. ASME B16.39, Class 150.
 - 2. Hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal, bronze seating surface.
 - 4. Threaded ends.
- E. Flanges: ASME B16.1, Class 125, cast iron.
- F. Appurtenances for Grooved-End, Galvanized-Steel Pipe:
 - Fittings for Grooved-End, Galvanized-Steel Pipe: Galvanized, ASTM A 47/A 47M, 1 malleable-iron casting; ASTM A 106/A 106M, steel pipe; or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 - 2. Fittings for Grooved-End, Galvanized-Steel Pipe:
 - AWWA C606 for steel-pipe dimensions. a.
 - Ferrous housing sections. b.
 - EPDM-rubber gaskets suitable for hot and cold water. c.
 - Bolts and nuts. d.
 - Minimum Pressure Rating: e.
 - 1) NPS 8 and Smaller: 600 psig.
 - 2) NPS 10 and NPS 12: 400 psig.
 - 3) NPS 14 to NPS 24: 250 psig..

2.5 STAINLESS-STEEL PIPING

Α. Potable-water piping and components shall comply with NSF 61 Annex G.

17-13 OSU, College of Osteopathic Medicine at **Cherokee Nation** Childers Architect 07-26-19

DOMESTIC WATER PIPING

- Β. Stainless-Steel Pipe: ASTM A 312/A 312M, Schedule 40.
- C. Stainless-Steel Pipe Fittings: ASTM A 815/A 815M.
- Appurtenances for Grooved-End, Stainless-Steel Pipe: D.
 - Fittings for Grooved-End, Stainless-Steel Pipe: Stainless-steel casting with dimensions 1 matching stainless-steel pipe.
 - 2. Mechanical Couplings for Grooved-End, Stainless-Steel Pipe:
 - a. AWWA C606 for stainless-steel-pipe dimensions.
 - Stainless-steel housing sections. b.
 - C. Stainless-steel bolts and nuts.
 - d. EPDM-rubber gaskets suitable for hot and cold water.
 - Minimum Pressure Rating: e.
 - 1) NPS 8 and Smaller: 600 psig.
 - NPS 10 and NPS 12 : 400 psig. 2)
 - NPS 14 to NPS 24: 250 psig. 3)

2.6 **CPVC PIPING**

- Α. CPVC Pipe: ASTM F 441/F 441M, Schedule 40 and Schedule 80.
 - 1. CPVC Socket Fittings: ASTM F 438 for Schedule 40 and ASTM F 439 for Schedule 80.
 - CPVC Threaded Fittings: ASTM F 437, Schedule 80. 2.
- Β. CPVC Piping System: ASTM D 2846/D 2846M, SDR 11, pipe and socket fittings.
- C. CPVC Tubing System: ASTM D 2846/D 2846M, SDR 11, tube and socket fittings.

2.7 PEX TUBE AND FITTINGS

- Α. Tube Material: PEX plastic according to ASTM F 876 and ASTM F 877. Fittings and pipe to be by same manufacturer.
- Β. Fittings: ASTM F 1807, metal insert and copper crimp rings ASTM F 1960, cold expansion fittings and reinforcing rings.
- C. Fittings: ASSE 1061, push-fit fittings.
- D. Manifold: Multiple-outlet, plastic or corrosion-resistant-metal assembly complying with ASTM F 876; with plastic or corrosion-resistant-metal valve for each outlet.

2.8 **PEX-AL-PEX TUBE AND FITTINGS**

- Tube Material: PEX plastic bonded to the inside and outside of a welded aluminum tube Α. according to ASTM F 1281.
- В. Oxygen Barrier: Limit oxygen diffusion through the pipe to maximum 0.10 mg per cu. m/day at 104 deg F according to DIN 4726.

C. Fittings: ASTM F 1974, metal insert fittings with split ring and compression nut (compression joint) or metal insert fittings with copper crimp rings (crimp joint). Use manufacturer specific ioining tools.

2.9 **PEX-AL-HDPE TUBE AND FITTINGS**

- Α. Tube Material: ASTM F 1986 tubing.
- Β. Fittings for PEX-AL-HDPE Tube: ASTM F 1986, metal-insert type with copper or stainless-steel crimp ring and matching PEX-AL-HDPE tube dimensions

2.10 **PVC PIPE AND FITTINGS**

- Α. PVC Pipe: ASTM D 1785, Schedule 40 and Schedule 80.
- Β. PVC Socket Fittings: ASTM D 2466 for Schedule 40 and ASTM D 2467 for Schedule 80.
- C. PVC Schedule 80 Threaded Fittings: ASTM D 2464.

2.11 **PP PIPE AND FITTINGS**

- Α. PP Pipe: ASTM F 2389, SDR 7.4 and SDR 11.
- PVC Socket Fittings: ASTM F 2389. Β.

2.12 **PIPING JOINING MATERIALS**

- Α. Pipe-Flange Gasket Materials:
 - 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 - 2. Full-face or ring type unless otherwise indicated.
- В. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys.
- D. Flux: ASTM B 813, water flushable.
- Brazing Filler Metals: AWS A5.8M/A5.8, BCuP Series, copper-phosphorus alloys for general-E. duty brazing unless otherwise indicated.
- F. Solvent Cements for Joining CPVC Piping and Tubing: ASTM F 493.
- Solvent Cements for Joining PVC Piping: ASTM D 2564. Include primer according to G. ASTM F 656.
- Plastic, Pipe-Flange Gaskets, Bolts, and Nuts: Type and material recommended by piping Η. system manufacturer unless otherwise indicated.

2.13 ENCASEMENT FOR PIPING

- A. Standard: ASTM A 674 or AWWA C105/A21.5.
- B. Form: tube.
- C. Color: Black or natural.

2.14 TRANSITION FITTINGS

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- C. Sleeve-Type Transition Coupling: AWWA C219.
- D. Plastic-to-Metal Transition Fittings:
 - 1. Description:
 - a. CPVC or PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions.
 - b. One end with threaded brass insert and one solvent-cement-socket or threaded end.
- E. Plastic-to-Metal Transition Unions:
 - 1. Description:
 - a. CPVC or PVC four-part union.
 - b. Brass or stainless-steel threaded end.
 - c. Solvent-cement-joint or threaded plastic end.
 - d. Rubber O-ring.
 - e. Union nut.

2.15 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Standard: ASSE 1079.
 - 2. Pressure Rating: 250 psig.
 - 3. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:
 - 1. Standard: ASSE 1079.
 - 2. Factory-fabricated, bolted, companion-flange assembly.
 - 3. Pressure Rating: 125 psig minimum at 180 deg F 300 psig.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1116 - 7

DOMESTIC WATER PIPING

- 4. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
- D. Dielectric-Flange Insulating Kits:
 - 1. Nonconducting materials for field assembly of companion flanges.
 - 2. Pressure Rating: 150 psig.
 - 3. Gasket: Neoprene or phenolic.
 - 4. Bolt Sleeves: Phenolic or polyethylene.
 - 5. Washers: Phenolic with steel backing washers.
- E. Dielectric Nipples:
 - 1. Standard: IAPMO PS 66.
 - 2. Electroplated steel nipple complying with ASTM F 1545.
 - 3. Pressure Rating and Temperature: 300 psig at 225 deg F.
 - 4. End Connections: Male threaded or grooved.
 - 5. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 31 2000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.
- D. Install underground copper tube and ductile-iron pipe in PE encasement according to ASTM A 674 or AWWA C105/A21.5.
- E. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 22 0519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 22 1119 "Domestic Water Piping Specialties."
- F. Install shutoff valve immediately upstream of each dielectric fitting.
- G. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 22 1119 "Domestic Water Piping Specialties."
- H. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.

DOMESTIC WATER PIPING

- I. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
- J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- K. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- L. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- M. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- N. Install piping to permit valve servicing.
- O. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- P. Install piping free of sags and bends.
- Q. Install fittings for changes in direction and branch connections.
- R. Install PEX tubing with loop at each change of direction of more than 90 degrees.
- S. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- T. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 22 0519 "Meters and Gages for Plumbing Piping."
- U. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 22 1123 "Domestic Water Pumps."
- V. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements for thermometers in Section 22 0519 "Meters and Gages for Plumbing Piping."
- W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 0518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

22 1116 - 9

- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.
- E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.
- G. Push-on Joints for Copper Tubing: Clean end of tube. Measure insertion depth with manufacturer's depth gage. Join copper tube and push-on-joint fittings by inserting tube to measured depth.
- H. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.
- I. Joint Construction for Grooved-End Copper Tubing: Make joints according to AWWA C606. Roll groove ends of tubes. Lubricate and install gasket over ends of tubes or tube and fitting. Install coupling housing sections over gasket with keys seated in tubing grooves. Install and tighten housing bolts.
- J. Joint Construction for Grooved-End, Ductile-Iron Piping: Make joints according to AWWA C606. Cut round-bottom grooves in ends of pipe at gasket-seat dimension required for specified (flexible or rigid) joint. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections over gasket with keys seated in piping grooves. Install and tighten housing bolts.
- K. Joint Construction for Grooved-End Steel Piping: Make joints according to AWWA C606. Roll groove ends of pipe as specified. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections over gasket with keys seated in piping grooves. Install and tighten housing bolts.
- L. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- M. Joint Construction for Solvent-Cemented Plastic Piping: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements. Apply primer.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 3. PVC Piping: Join according to ASTM D 2855.

22 1116 - 10

DOMESTIC WATER PIPING

- N. Joints for PEX Tubing: Join according to ASTM F 1807 for metal insert and copper crimp ring fittings and ASTM F 1960 for cold expansion fittings and reinforcing rings.
- Joints for PEX Tubing: Join according to ASSE 1061 for push-fit fittings. Ο.
- Ρ. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 TRANSITION FITTING INSTALLATION

- Α. Install transition couplings at joints of dissimilar piping.
- Β. Transition Fittings in Underground Domestic Water Piping:
 - 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 - Fittings for NPS 2 and Larger: Sleeve-type coupling. 2.
- C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.5 DIELECTRIC FITTING INSTALLATION

- Α. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- В. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits or nipples.
- Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits. D.

3.6 HANGER AND SUPPORT INSTALLATION

- Comply with requirements for seismic-restraint devices in Section 22 0548 "Vibration and Α. Seismic Controls for Plumbing Piping and Equipment."
- В. Comply with requirements for pipe hanger, support products, and installation in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - Individual, Straight, Horizontal Piping Runs: 2.
 - 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers. a.
 - Longer Than 100 Feet: MSS Type 43, adjustable roller hangers. b.
 - Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls. c.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

17-13 OSU, College of Osteopathic Medicine at **Cherokee Nation** Childers Architect 07-26-19

DOMESTIC WATER PIPING

- Ε. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - NPS 3/4 and Smaller: 60 inches with 3/8-inch rod. 1.
 - NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod. 2.
 - NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod. 3.
 - NPS 2-1/2: 108 inches with 1/2-inch rod. 4.
 - NPS 3 to NPS 5: 10 feet with 1/2-inch rod. 5.
 - NPS 6: 10 feet with 5/8-inch rod. 6.
 - NPS 8: 10 feet with 3/4-inch rod. 7.
- F. Install supports for vertical copper tubing every 10 feet.
- G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
 - NPS 1-1/2: 108 inches with 3/8-inch rod. 2.
 - NPS 2: 10 feet with 3/8-inch rod. 3.
 - 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 - 5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
 - NPS 4 and NPS 5: 12 feet with 5/8-inch rod. 6.
 - 7. NPS 6: 12 feet with 3/4-inch rod.
 - 8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.
- Η. Install supports for vertical steel piping every 15 feet.
- Install hangers for stainless-steel piping with the following maximum horizontal spacing and Ι. minimum rod diameters:
 - 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
 - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 - 3. NPS 2: 10 feet with 3/8-inch rod.
 - 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 - 5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
 - 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 - NPS 6 :12 feet with 3/4-inch rod. 7.
 - NPS 8 to NPS 12:12 feet with 7/8-inch rod. 8.
- J. Install supports for vertical stainless-steel piping every 15 feet.
- K. Install vinyl-coated hangers for CPVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1 and Smaller: 36 inches with 3/8-inch rod.
 - NPS 1-1/4 to NPS 2: 48 inches with 3/8-inch rod. 2.
 - NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod. 3.
 - NPS 4 and NPS 5: 48 inches with 5/8-inch rod. 4.
 - NPS 6: 48 inches with 3/4-inch rod. 5.
 - NPS 8: 48 inches with 7/8-inch rod. 6.
- L. Install supports for vertical CPVC piping every 60 inches for NPS 1 and smaller, and every 72 inches for NPS 1-1/4 and larger.

- M. Install vinyl-coated hangers for PEX tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1 and Smaller: 32 inches with 3/8-inch rod.
- N. Install hangers for vertical PEX tubing every 48 inches.
- O. Install vinyl-coated hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 2 and Smaller: 48 inches with 3/8-inch rod.
 - 2. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6: 48 inches with 3/4-inch rod.
 - 5. NPS 8: 48 inches with 7/8-inch rod.
- P. Install supports for vertical PVC piping every 48 inches.
- Q. Install vinyl-coated hangers for PP piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1 and Smaller: 36 inches with 3/8-inch rod.
 - 2. NPS 1-1/4 to NPS 2: 48 inches with 3/8-inch rod.
 - 3. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
 - 4. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 5. NPS 6: 48 inches with 3/4-inch rod.
 - 6. NPS 8: 48 inches with 7/8-inch rod.
- R. Install supports for vertical PP piping every 60 inches for NPS 1 and smaller, and every 72 inches for NPS 1-1/4 and larger.
- S. Support piping and tubing not listed in this article according to MSS SP-58 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.

4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 IDENTIFICATION

- A. Identify system components. Comply with requirements for identification materials and installation in Section 22 0553 "Identification for Plumbing Piping and Equipment."
- B. Label pressure piping with system operating pressure.

3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 - Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 - c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 - d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
 - 2. Piping Tests:
 - a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 - c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 - f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1116 - 14

DOMESTIC WATER PIPING

C. Prepare test and inspection reports.

3.10 ADJUSTING

- Α. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - Open throttling valves to proper setting. 3.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - Manually adjust ball-type balancing valves in hot-water-circulation return piping to a. provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - Remove plugs used during testing of piping and for temporary sealing of piping during 5. installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - Remove filter cartridges from housings and verify that cartridges are as specified for 7. application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING

- Α. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - Flush piping system with clean, potable water until dirty water does not appear at a. outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - Flush system with clean, potable water until no chlorine is in water coming from c. system after the standing time.
 - d. Repeat procedures if biological examination shows contamination.
 - Submit water samples in sterile bottles to authorities having jurisdiction. e.
- Β. Clean non-potable domestic water piping as follows:
 - Purge new piping and parts of existing piping that have been altered, extended, or 1. repaired before using.
 - Use purging procedures prescribed by authorities having jurisdiction or; if methods are 2. not prescribed, follow procedures described below:

- a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
- b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- C. Prepare and submit reports of purging and disinfecting activities. Include copies of watersample approvals from authorities having jurisdiction.
- D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.12 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.

3.13 VALVE SCHEDULE

- A. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 - 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
 - 3. Hot-Water Circulation Piping, Balancing Duty: Calibrated balancing valves.
 - 4. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.
- C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION

SECTION 22 1119

DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Vacuum breakers.
 - 2. Backflow preventers.
 - 3. Water pressure-reducing valves.
 - 4. Balancing valves.
 - 5. Temperature-actuated, water mixing valves.
 - 6. Strainers.
 - 7. Outlet boxes.
 - 8. Hose stations.
 - 9. Hose bibbs.
 - 10. Wall hydrants.
 - 11. Ground hydrants.
 - 12. Post hydrants.
 - 13. Drain valves.
 - 14. Water-hammer arresters.
 - 15. Air vents.
 - 16. Trap-seal primer valves.
 - 17. Trap-seal primer systems.
 - 18. Specialty valves.
 - 19. Flexible connectors.
 - 20. Water meters.

B. Related Requirements:

- 1. Section 22 0519 "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
- 2. Section 22 1116 "Domestic Water Piping" for water meters.
- 3. Section 22 3200 "Domestic Water Filtration Equipment" for water filters in domestic water piping.
- 4. Section 22 4300 "Medical Plumbing Fixtures" for thermostatic mixing valves for sitz baths, thermostatic mixing-valve assemblies for hydrotherapy equipment, and outlet boxes for dialysis equipment.
- 5. Section 22 4500 "Emergency Plumbing Fixtures" for water tempering equipment.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For domestic water piping specialties.
 - 1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

- A. Potable-water piping and components shall comply with NSF 61 Annex G and NSF 14.
- B. The product descriptions listed in the section may not all be used on this project. Refer to the Product Schedules and details on the drawings for the specific application for each product or material. Products shown on the schedule for a specific application may not be substituted without pre-approval from the Engineer. Where there is a conflict between the drawing schedule and specifications, the drawing schedule shall take precedent.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

- A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 - 1. Standard: ASSE 1001.
 - 2. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 - 3. Body: Bronze.
 - 4. Inlet and Outlet Connections: Threaded.
 - 5. Finish: Chrome plated.

B. Pressure Vacuum Breakers:

- 1. Standard: ASSE 1020.
- 2. Operation: Continuous-pressure applications.
- 3. Pressure Loss: 5 psig maximum, through middle third of flow range.
- 4. Pressure Loss at Design Flow Rate: 5 psi max.
- 5. Accessories:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1119 - 2

DOMESTIC WATER PIPING SPECIALTIES a. Valves: Ball type, on inlet and outlet.

2.4 WATER PRESSURE-REDUCING VALVES

- A. Water Regulators:
 - 1. Standard: ASSE 1003.
 - 2. Pressure Rating: Initial working pressure of 150 psig.
 - 3. Design Flow Rate: See Drawings.
 - 4. Design Inlet Pressure: See Drawings.
 - 5. Design Outlet Pressure Setting: See Drawings:
 - 6. Body: Bronze with chrome-plated finish for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3.
 - 7. Valves for Booster Heater Water Supply: Include integral bypass.
 - 8. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and NPS 3.
- B. Water-Control Valves:
 - 1. Description: Pilot-operated, diaphragm-type, single-seated, main water-control valve.
 - 2. Pressure Rating: Initial working pressure of 150 psig minimum with AWWA C550 or FDAapproved, interior epoxy coating. Include small pilot-control valve, restrictor device, specialty fittings, and sensor piping.
 - 3. Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
 - a. Pattern: Angle or Globe-valve design.
 - b. Trim: Stainless steel.
 - 4. Design Flow: See Drawings.
 - 5. Design Inlet Pressure: See Drawings.
 - 6. Design Outlet Pressure Setting: See Drawings.
 - 7. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

2.5 BALANCING VALVES

- A. Copper-Alloy Calibrated Balancing Valves:
 - 1. Type: Ball or Y-pattern globe valve with two readout ports and memory-setting indicator.
 - 2. Body: Brass or bronze.
 - 3. Size: Same as connected piping, but not larger than NPS 2.
 - 4. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.
- B. Cast-Iron Calibrated Balancing Valves:
 - 1. Type: Adjustable with Y-pattern globe valve, two readout ports, and memory-setting indicator.
 - 2. Size: Same as connected piping, but not smaller than NPS 2-1/2.
- C. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

D. Memory-Stop Balancing Valves:

- 1. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
- 2. Pressure Rating: 400-psig minimum CWP.
- 3. Size: NPS 2 or smaller.
- 4. Body: Copper alloy.
- 5. Port: Standard or full port.
- 6. Ball: Chrome-plated brass.
- 7. Seats and Seals: Replaceable.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1119 - 3

DOMESTIC WATER PIPING SPECIALTIES

- 8. End Connections: Solder joint or threaded.
- 9. Handle: Vinyl-covered steel with memory-setting device.

2.6 STRAINERS FOR DOMESTIC WATER PIPING

- A. Y-Pattern Strainers:
 - 1. Pressure Rating: 125 psig minimum unless otherwise indicated.
 - 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
 - 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 - 4. Screen: Stainless steel with round perforations unless otherwise indicated.
 - 5. Perforation Size:
 - a. Strainers NPS 2 and Smaller: 0.033 inch.
 - b. Strainers NPS 2-1/2 to NPS 4 0.045 inch.
 - c. Strainers NPS 5 and Larger: 0.10 inch.
 - 6. Drain: Factory-installed, hose-end drain valve.

2.7 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves:
 - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
 - 2. Pressure Rating: 400-psig minimum CWP.
 - 3. Size: NPS ³/₄.
 - 4. Body: Copper alloy.
 - 5. Ball: Chrome-plated brass.
 - 6. Seats and Seals: Replaceable.
 - 7. Handle: Vinyl-covered steel.
 - 8. Inlet: Threaded or solder joint.
 - 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.
- B. Gate-Valve-Type, Hose-End Drain Valves:
 - 1. Standard: MSS SP-80 for gate valves.
 - 2. Pressure Rating: Class 125.
 - 3. Size: NPS 3/4.
 - 4. Body: ASTM B 62 bronze.
 - 5. Inlet: NPS ³/₄ threaded or solder joint.
 - 6. Outlet: Garden-hose thread complying with ASME B1.20.7 and cap with brass chain.
- C. Stop-and-Waste Drain Valves:
 - 1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
 - 2. Pressure Rating: 200-psig minimum CWP or Class 125.
 - 3. Size: NPS 3/4.
 - 4. Body: Copper alloy or ASTM B 62 bronze.
 - 5. Drain: NPS 1/8 side outlet with cap.

2.8 AIR VENTS

- A. Bolted-Construction Automatic Air Vents:
 - 1. Body: Bronze.
 - 2. Pressure Rating and Temperature: 125-psig minimum pressure rating at 140 deg F.
 - 3. Float: Replaceable, corrosion-resistant metal.
 - 4. Mechanism and Seat: Stainless steel.
 - 5. Size: NPS 1/2 minimum inlet.
 - 6. Inlet and Vent Outlet End Connections: Threaded.
- B. Welded-Construction Automatic Air Vents:
 - 1. Body: Stainless steel.
 - 2. Pressure Rating: 150-psig minimum pressure rating.
 - 3. Float: Replaceable, corrosion-resistant metal.
 - 4. Mechanism and Seat: Stainless steel.
 - 5. Size: NPS 3/8 minimum inlet.
 - 6. Inlet and Vent Outlet End Connections: Threaded.

2.9 SPECIALTY VALVES

- A. Comply with requirements for general-duty metal valves in Section 22 0523.12 "Ball Valves for Plumbing Piping," Section 22 0523.13 "Butterfly Valves for Plumbing Piping," Section 22 0523.14 "Check Valves for Plumbing Piping," and Section 22 0523.15 "Gate Valves for Plumbing Piping."
- B. CPVC Union Ball Valves:
 - 1. Description:
 - a. Standard: MSS SP-122.
 - b. Pressure Rating and Temperature: 150 psig 73 deg F.
 - c. Body Material: CPVC.
 - d. Body Design: Union type.
 - e. End Connections for Valves NPS 2 and Smaller: Detachable, socket or threaded.
 - f. End Connections for Valves NPS 2-1/2 to NPS 4: Detachable, socket or threaded.
 - g. Ball: CPVC; full port.
 - h. Seals: PTFE or EPDM-rubber O-rings.
 - i. Handle: Tee shaped.
- C. PVC Union Ball Valves:
 - 1. Description:
 - a. Standard: MSS SP-122.
 - b. Pressure Rating and Temperature:150 psig 73 deg F.
 - c. Body Material: PVC.
 - d. Body Design: Union type.
 - e. End Connections for Valves NPS 2 and Smaller: Detachable, socket or threaded.
 - f. End Connections for Valves NPS 2-1/2 to NPS 4: Detachable, socket or threaded.
 - g. Ball: PVC; full port.
 - h. Seals: PTFE or EPDM-rubber O-rings.
 - i. Handle: Tee shaped.
- D. CPVC Non-union Ball Valves:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1119 - 5

DOMESTIC WATER PIPING SPECIALTIES

- 1. Description:
 - a. Standard: MSS SP-122.
 - b. Pressure Rating and Temperature:150 psig 73 deg F.
 - c. Body Material: CPVC.
 - d. Body Design: Non-union type.
 - e. End Connections: Socket or threaded.
 - f. Ball: CPVC; full or reduced port.
 - g. Seals: PTFE or EPDM-rubber O-rings.
 - h. Handle: Tee shaped.
- E. PVC Non-union Ball Valves:
 - 1. Description:
 - a. Standard: MSS SP-122.
 - b. Pressure Rating and Temperature: 150 psig at 73 deg F.
 - c. Body Material: PVC.
 - d. Body Design: Non-union type.
 - e. End Connections: Socket or threaded.
 - f. Ball: PVC; full or reduced port.
 - g. Seals: PTFE or EPDM-rubber O-rings.
 - h. Handle: Tee shaped.
- F. CPVC Butterfly Valves:
 - 1. Description:
 - a. Pressure Rating and Temperature: 150 psig at 73 deg F.
 - b. Body Material: CPVC.
 - c. Body Design: Lug or wafer type.
 - d. Seat: EPDM rubber.
 - e. Seals: PTFE or EPDM-rubber O-rings.
 - f. Disc: CPVC.
 - g. Stem: Stainless steel.
 - h. Handle: Lever.
- G. PVC Butterfly Valves:
 - 1. Description:
 - a. Pressure Rating and Temperature: 150 psig at 73 deg F Insert temperature.
 - b. Body Material: PVC.
 - c. Body Design: Lug or wafer type.
 - d. Seat: EPDM rubber.
 - e. Seals: PTFE or EPDM-rubber O-rings.
 - f. Disc: PVC.
 - g. Stem: Stainless steel.
 - h. Handle: Lever.
- H. CPVC Ball Check Valves:
 - 1. Description:
 - a. Pressure Rating and Temperature: 150 psig at 73 deg F.
 - b. Body Material: CPVC.
 - c. Body Design: Union-type ball check.
 - d. End Connections for Valves NPS 2 and Smaller: Detachable, socket or threaded.
 - e. End Connections for Valves NPS 2-1/2 to NPS 4 Detachable, socket or threaded.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1119 - 6

DOMESTIC WATER PIPING SPECIALTIES

- f. Ball: CPVC.
- g. Seals: EPDM- or FKM-rubber O-rings.
- I. PVC Ball Check Valves:
 - 1. Description:
 - a. Pressure Rating and Temperature: 150 psig at 73 deg F.
 - b. Body Material: PVC.
 - c. Body Design: Union-type ball check.
 - d. End Connections for Valves NPS 2 and Smaller: Detachable, socket or threaded.
 - e. End Connections for Valves NPS 2-1/2 to NPS 4: Detachable, socket or threaded.
 - f. Ball: PVC.
 - g. Seals: EPDM- or FKM-rubber O-rings.
- J. CPVC Gate Valves:
 - 1. Description:
 - a. Pressure Rating and Temperature: 150 psig at 73 deg F.
 - b. Body Material: CPVC.
 - c. Body Design: Nonrising stem.
 - d. End Connections for Valves NPS 2 and Smaller: socket or threaded.
 - e. End Connections for Valves NPS 2-1/2 to NPS 4: Socket or threaded.
 - f. Gate and Stem: Plastic.
 - g. Seals: EPDM rubber.
 - h. Handle: Wheel.
- K. PVC Gate Valves:
 - 1. Description:
 - a. Pressure Rating and Temperature: 150 psig at 73 deg F.
 - b. Body Material: PVC.
 - c. Body Design: Nonrising stem.
 - d. End Connections for Valves NPS 2 and Smaller: Socket or threaded.
 - e. End Connections for Valves NPS 2-1/2 to NPS 4: Socket or threaded.
 - f. Gate and Stem: Plastic.
 - g. Seals: EPDM rubber.
 - h. Handle: Wheel.

2.10 FLEXIBLE CONNECTORS

- A. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 - 1. Working-Pressure Rating: Minimum 250 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.
- B. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 - 1. Working-Pressure Rating: Minimum 250 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

2.11 WATER METERS

- A. Displacement-Type Water Meters:
 - 1. Description:
 - a. Standard: AWWA C700.
 - b. Pressure Rating: 150-psig working pressure.
 - c. Body Design: Nutating disc; totalization meter.
 - d. Registration: In gallons or cubic feet as required by utility company.
 - e. Case: Bronze.
 - f. End Connections: Threaded.
- B. Turbine-Type Water Meters:
 - 1. Description:
 - a. Standard: AWWA C701.
 - b. Pressure Rating: 150-psig working pressure.
 - c. Body Design: Turbine; totalization meter.
 - d. Registration: In gallons or cubic feet as required by utility company.
 - e. Case: Bronze.
 - f. End Connections for Meters NPS 2 and Smaller: Threaded.
 - g. End Connections for Meters NPS 2-1/2 and Larger: Flanged.
- C. Compound-Type Water Meters:
 - 1. Description:
 - a. Standard: AWWA C702.
 - b. Pressure Rating: 150-psig working pressure.
 - c. Body Design: With integral mainline and bypass meters; totalization meter.
 - d. Registration: In gallons or cubic feet as required by utility company.
 - e. Case: Bronze.
 - f. Pipe Connections: Flanged.
- D. Remote Registration System: Direct-reading type complying with AWWA C706; modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly as required by utility company.
- E. Remote Registration System: Encoder type complying with AWWA C707; modified with signaltransmitting assembly, low-voltage connecting wiring, and remote register assembly as required by utility company.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system.
 - 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe

diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.

- 3. Do not install bypass piping around backflow preventers.
- B. Install water regulators with inlet and outlet shutoff valvesand bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.
- C. Install water-control valves with inlet and outlet shutoff valves and bypass with globe valve. Install pressure gages on inlet and outlet.
- D. Install balancing valves in locations where they can easily be adjusted.
- E. Install temperature-actuated, water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 - 1. Install cabinet-type units recessed in or surface mounted on wall as specified.
- F. Install Y-pattern strainers for water on supply side of each control valve, water pressurereducing valve, solenoid valve, and pump.
- G. Install outlet boxes recessed in wall or surface mounted on wall. Install 2-by-4-inch fireretardant-treated-wood blocking, wall reinforcement between studs. Comply with requirements for fire-retardant-treated-wood blocking in Section 06 1000 "Rough Carpentry."
- H. Install hose stations with check stops or shutoff valves on inlets and with thermometer on outlet.
 - 1. Install cabinet-type units recessed in or surface mounted on wall as specified. Install 2by-4-inch fire-retardant-treated-wood blocking, wall reinforcement between studs. Comply with requirements for fire-retardant-treated-wood blocking in Section 06 1000 "Rough Carpentry."
- I. Install ground hydrants with 1 cu. yd. of crushed gravel around drain hole. Set ground hydrants with box flush with grade.
- J. Install draining-type post hydrants with 1 cu. yd. of crushed gravel around drain hole. Set post hydrants in concrete paving or in 1 cu. ft. of concrete block at grade.
- K. Set nonfreeze, nondraining-type post hydrants in concrete or pavement.
- L. Set freeze-resistant yard hydrants with riser pipe in concrete or pavement. Do not encase canister in concrete.
- M. Install water-hammer arresters in water piping according to PDI-WH 201.
- N. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain.
- O. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.
- P. Install drainage-type, trap-seal primer valves as lavatory trap with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting.
- Q. Install trap-seal primer systems with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust system for proper flow.

3.2 CONNECTIONS

- A. Comply with requirements for ground equipment in Section 26 0526 "Grounding and Bonding for Electrical Systems."
- B. Fire-retardant-treated-wood blocking is specified in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Pressure vacuum breakers.
 - 2. Intermediate atmospheric-vent backflow preventers.
 - 3. Reduced-pressure-principle backflow preventers.
 - 4. Double-check, backflow-prevention assemblies.
 - 5. Carbonated-beverage-machine backflow preventers.
 - 6. Dual-check-valve backflow preventers.
 - 7. Reduced-pressure-detector, fire-protection, backflow-preventer assemblies.
 - 8. Double-check, detector-assembly backflow preventers.
 - 9. Water pressure-reducing valves.
 - 10. Calibrated balancing valves.
 - 11. Primary, thermostatic, water mixing valves.
 - 12. Manifold, thermostatic, water mixing-valve assemblies.
 - 13. Photographic-process, thermostatic, water mixing-valve assemblies.
 - 14. Primary water tempering valves.
 - 15. Outlet boxes.
 - 16. Hose stations.
 - 17. Supply-type, trap-seal primer valves.
 - 18. Trap-seal primer systems.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test each pressure vacuum breaker and backflow preventer according to authorities having jurisdiction and the device's reference standard.
- B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1119 - 10

DOMESTIC WATER PIPING SPECIALTIES

- B. Set field-adjustable flow set points of balancing valves.
- C. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION

SECTION 22 1123

DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. In-line, sealless centrifugal pumps.

1.3 **DEFINITIONS**

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include materials of construction, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water pumps to include in operation and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Retain shipping flange protective covers and protective coatings during storage.
- B. Protect bearings and couplings against damage.

22 1123 - 1

C. Comply with pump manufacturer's written rigging instructions for handling.

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 IN-LINE, SEALLESS CENTRIFUGAL PUMPS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. <u>Armstrong Pumps Inc</u>.
 - 2. Bell & Gossett Domestic Pump; ITT Corporation.
 - 3. <u>Grundfos Pumps Corp</u>.
 - 4. <u>TACO Incorporated</u>.
 - 5. <u>WILO USA LLC WILO Canada Inc</u>.
- B. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.
- C. Pump Construction:
 - 1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
 - 2. Casing: Bronze, with threaded or companion-flange connections.
 - 3. Impeller: Plastic.
 - 4. Motor: Single speed, unless otherwise indicated.

2.2 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 22 0513 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.3 CONTROLS

- A. Thermostats: Electric; adjustable for control of hot-water circulation pump.
 - 1. Type: Water-immersion temperature sensor, for installation in piping.
 - 2. Range: 65 to 200 deg F.
 - 3. Enclosure: NEMA 250,.
 - 4. Operation of Pump: On or off.
 - 5. Transformer: Provide if required.
 - 6. Power Requirement: 24 V, ac.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1123 - 2

DOMESTIC WATER PUMPS 7. Settings: Start pump at 110 deg F and stop pump at 125 deg F.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.

3.2 PUMP INSTALLATION

- A. Comply with HI 1.4.
- B. Install in-line, sealless centrifugal pumps with shaft horizontal unless otherwise indicated.
- C. Install thermostats in hot-water return piping.

3.3 CONNECTIONS

- A. Comply with requirements for piping specified in Section 22 1116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to pumps to allow service and maintenance.
- C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 - Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in Section 22 0523 "General-Duty Valves for Plumbing Piping" and comply with requirements for strainers specified in Section 22 1119 "Domestic Water Piping Specialties."
- D. Connect thermostats, to pumps that they control.

3.4 IDENTIFICATION

A. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.5 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Set thermostats, for automatic starting and stopping operation of pumps.
 - 5. Perform the following startup checks for each pump before starting:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1123 - 3

DOMESTIC WATER PUMPS

- a. Verify bearing lubrication.
- b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
- c. Verify that pump is rotating in the correct direction.
- 6. Prime pump by opening suction valves and closing drains and prepare pump for operation.
- 7. Start motor.
- 8. Open discharge valve slowly.
- 9. Adjust temperature settings on thermostats.
- 10. Adjust timer settings.

3.6 ADJUSTING

- A. Adjust domestic water pumps to function smoothly and lubricate as recommended by manufacturer.
- B. Adjust initial temperature set points.
- C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION

SECTION 22 1123.13

DOMESTIC-WATER PACKAGED BOOSTER PUMPS

TIPS:

To view non-printing **Editor's Notes** that provide guidance for editing, click on MasterWorks/Single-File Formatting/Toggle/Editor's Notes.

To read **detailed research**, **technical information about products and materials**, **and coordination checklists**, click on MasterWorks/Supporting Information.

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Simplex, constant-speed booster pumps.
 - 2. Multiplex, constant-speed booster pumps.
 - 3. Simplex, variable-speed booster pumps.
 - 4. Multiplex, variable-speed booster pumps.
- B. Related Sections:
 - 1. Section 22 1123 "Domestic Water Pumps" for domestic-water circulation pumps.
 - 2. Section 22 1223 "Facility Indoor Potable-Water Storage Tanks" for separate hydropneumatic domestic-water tanks for multiplex booster pumps.

1.3 **DEFINITIONS**

A. VFC: Variable-frequency controller(s).

1.4 **PERFORMANCE REQUIREMENTS**

- A. Seismic Performance: Booster pumps shall withstand the effects of earthquake motions determined according to [ASCE/SEI 7] < Insert requirement >.
 - 1. The term "withstand" means "the booster pump will remain in place without separation of any parts from the booster pump when subjected to the seismic forces specified[and the booster pump will be fully operational after the seismic event]."

22 1123.13 - 1

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. [Include construction details, material descriptions, and dimensions of individual components and profiles.] [Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.]
- B. Shop Drawings: For booster pumps. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For booster pumps, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For booster pumps to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASME Compliance: Comply with ASME B31.9 for piping.
- C. UL Compliance for Packaged Pumping Systems:
 - 1. UL 508, "Industrial Control Equipment."
 - 2. UL 508A, "Industrial Control Panels."
 - 3. UL 778, "Motor-Operated Water Pumps."
 - 4. UL 1995, "Heating and Cooling Equipment."
- D. Booster pumps shall be listed and labeled as packaged pumping systems by testing agency acceptable to authorities having jurisdiction.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Retain protective coatings and flange's protective covers during storage.

1.10 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 SIMPLEX, CONSTANT-SPEED BOOSTER PUMPS

- A. <a>

 A.
- B. Description: Factory-assembled and -tested, fluid-handling system for domestic water, with pump, piping, valves, specialties, and controls, and mounted on base.
- C. Pump:
 - 1. Type: End suction as defined in HI 1.1-1.2 and HI 1.3 for end-suction, close-coupled, single-stage, overhung-impeller, centrifugal pump.
 - 2. Casing: Radially split; [bronze] [cast iron] [stainless steel].
 - 3. Impeller: Closed, [ASTM B 584 cast bronze] [stainless steel] <Insert material>; statically and dynamically balanced and keyed to shaft.
 - 4. Shaft and Shaft Sleeve: Steel shaft, with copper-alloy shaft sleeve and deflector.
 - 5. Seal: Mechanical.
 - 6. Orientation: Mounted [horizontally] [or] [vertically].
- D. Motor: Single speed, with [grease-lubricated] [or] [pre-greased, permanently shielded], balltype bearings, and directly mounted to pump casing. Select motor that will not overload through full range of pump performance curve.
- E. Piping: [Copper tube and copper fittings] [Stainless-steel pipe and fittings] [Stainless-steel pipe and fitting headers and copper tube and copper fittings between headers and pump] [Galvanized-steel pipe and cast-iron fittings].
- F. Valves:
 - 1. Shutoff Valves NPS 2 (DN 50) and smaller: [Gate valve] [or] [two-piece, full-port ball valve], in pump suction and discharge piping.
 - 2. Shutoff Valves NPS 2-1/2 (DN 65) and Larger: [Gate valve] [or] [lug-type butterfly valve], in pump suction and discharge piping.
 - 3. Check Valve NPS 2 (DN 50) and smaller: [Silent] [or] [swing] type in pump discharge piping.
 - 4. Check Valve NPS 2-1/2 (DN 65) and Larger: Silent type in pump discharge piping.
 - 5. Control Valve: Adjustable, automatic, [**pilot-operated**] [**or**] [**direct-acting**], pressure-reducing type in pump discharge piping.
 - 6. Control Valve: Combination adjustable, automatic, [**pilot-operated**] [**or**] [**direct-acting**] pressure-reducing-and-check type in pump discharge piping.
 - 7. Thermal-Relief Valve: Temperature-and-pressure relief type in pump discharge piping.

22 1123.13 - 3

- G. Dielectric Fittings: With insulating material isolating joined dissimilar metals.
- H. Hydropneumatic Tank: Precharged[, **ASME-construction**,] diaphragm or bladder tank made of materials complying with NSF 61 Annex G.
- I. Control Panel: Factory installed and connected as an integral part of booster pump; automatic for single-pump, constant-speed operation, with load control and protection functions.
 - 1. Control Logic: [Electromechanical system with switches, relays] [Solid-state system with transducers, programmable microprocessor], and other devices in the controller.
 - 2. Motor Controller: NEMA ICS 2, general-purpose, Class A, full-voltage, combinationmagnetic type with undervoltage release feature, motor-circuit-protector-type disconnect, and short-circuit protective device.
 - a. Control Voltage: [24] [120]-V ac, with integral control-power transformer.
 - 3. Motor Controller: NEMA ICS 2, solid-state, reduced-voltage type.
 - a. Control Voltage: [24] [120]-V ac, with integral control-power transformer.
 - 4. Enclosure: NEMA 250, [Type 1] [Type 3R] [Type 4] [Type 12] <Insert type>.
 - 5. Motor Overload Protection: Overload relay in each phase.
 - 6. Starting Devices: Hand-off-automatic selector switch in cover of control panel, plus pilot device for automatic control.
 - 7. Pump Operation: [Current-] [or] [pressure-] sensing method.
 - a. Time Delay: Controls pump on-off operation; adjustable from [1 to 300] < Insert value> seconds.
 - 8. Instrumentation: Suction and discharge pressure gages.
 - 9. Light: Running light for pump.
 - 10. Thermal-bleed cutoff.
 - 11. [Low-suction-pressure] [Water-storage-tank, low-level] cutout.
 - 12. High-suction-pressure cutout.
 - 13. Low-discharge-pressure cutout.
 - 14. High-discharge-pressure cutout.
 - Direct Digital Control (DDC) System for HVAC: Provide auxiliary contacts for interface to [BACnet] [LonWorks] <Insert system> DDC system. DDC systems are specified in Section 23 0923 "Direct Digital Control (DDC) System for HVAC." Include the following:
 - a. On-off status of pump.
 - b. Alarm status.
- J. Base: Structural steel.
- K. Capacities and Characteristics:
 - 1. Minimum Pressure Rating: [125 psig (860 kPa)] [150 psig (1035 kPa)] < Insert value>.
 - 2. Booster-Pump Capacity: <Insert gpm (L/s)>.
 - 3. Total Dynamic Head: < Insert feet (kPa)>.
 - 4. Speed: <Insert rpm>.
 - 5. Minimum Inlet Pressure: <Insert psig (kPa)>.
 - 6. Maximum Inlet Pressure: <Insert psig (kPa)>.
 - 7. Discharge Pressure: < Insert psig (kPa)>.
 - 8. Low-Suction-Pressure Shutoff: <**Insert psig (kPa)**>.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1123.13 - 4

- 9. High-Suction-Pressure Shutoff: <Insert psig (kPa)>.
- 10. Low-Discharge-Pressure Shutoff: < Insert psig (kPa)>.
- 11. High-Discharge-Pressure Shutoff: < Insert psig (kPa)>.
- 12. Inlet Size: < Insert NPS (DN)>.
- Outlet Size: < Insert NPS (DN)>. 13.
- Control Valve: 14.
 - Minimum Size: < Insert NPS (DN)>. a.
 - Maximum Pressure Drop: < Insert psig (kPa)>. b.
- 15. **Electrical Characteristics:**
 - Motor Horsepower: < Insert value>. a.
 - Volts: [120] [240] [277] [480] <Insert value>. b.
 - c. Phases: [Single] [Three].
 - Hertz : 60. d.
 - Full-Load Amperes: < Insert value>. e.
 - Minimum Circuit Ampacity: <Insert value>. f.
 - Maximum Overcurrent Protection: < Insert amperage>. g.
- 16. Hydropneumatic Tank:
 - Minimum Water Volume: < Insert gal. (L)> capacity. а
 - b. Pressure Rating: [125 psig (860 kPa)] [150 psig (1035 kPa)] [250 psig (1725 kPa)] <Insert value>.
 - Air Precharge: <Insert psig (kPa)>. c.

2.2 MULTIPLEX, CONSTANT-SPEED BOOSTER PUMPS

- Α. <Double click here to find, evaluate, and insert list of manufacturers and products.>
- В. Description: Factory-assembled and -tested, fluid-handling system for domestic water, with pumps, piping, valves, specialties, and controls, and mounted on base.
- C. Pumps:
 - 1. Type: End suction as defined in HI 1.1-1.2 and HI 1.3 for end-suction, close-coupled, single-stage, overhung-impeller, centrifugal pump.
 - 2. Casing: Radially split; [bronze] [cast iron] [stainless steel].
 - Impeller: Closed, [ASTM B 584 cast bronze] [stainless steel] <Insert material>; 3. statically and dynamically balanced and keyed to shaft.
 - 4. Shaft and Shaft Sleeve: Steel shaft, with copper-alloy shaft sleeve and deflector.
 - Seal: Mechanical. 5.
 - Orientation: Mounted [horizontally] [or] [vertically]. 6.
- D. Pumps:
 - 1. Type: End suction as defined in HI 1.1-1.2 and HI 1.3 for end-suction, frame-mounted, separately coupled, single-stage, overhung-impeller, centrifugal pump.[Include backpullout design.]
 - 2. Casing: Radially split; [bronze] [cast iron] [stainless steel].
 - Impeller: Closed, [ASTM B 584 cast bronze] [stainless steel] <Insert material>; 3. statically and dynamically balanced and keyed to shaft.
 - Shaft and Shaft Sleeve: Stainless-steel[or steel] shaft, with copper-alloy shaft sleeve 4.

PUMPS

17-13 OSU, College of Osteopathic Medicine at DOMESTIC-WATER Cherokee Nation 22 1123.13 - 5 PACKAGED BOOSTER **Childers Architect** 07-26-19

and deflector.

- 5. Seal: Mechanical.
- 6. Bearing: [Grease-lubricated] [or] [pre-greased, permanently shielded] ball type.
- 7. Coupling: Flexible, with metal guard.
- E. Pumps:
 - 1. Type: In line, single stage as defined in HI 1.1-1.2 and HI 1.3 for in-line, single-stage, close-coupled, overhung-impeller, centrifugal pump.
 - 2. Casing: Radially split; [bronze] [cast iron] [stainless steel].
 - 3. Impeller: Closed, [ASTM B 584 cast bronze] [stainless steel] <Insert material>; statically and dynamically balanced and keyed to shaft.
 - 4. Shaft and Shaft Sleeve: Stainless-steel[or steel] shaft, with copper-alloy shaft sleeve.
 - 5. Seal: Mechanical.
 - 6. Bearing: [Grease-lubricated] [or] [pre-greased, permanently shielded] ball type.
- F. Pumps:
 - 1. Type: Vertical, multistage as defined in HI 1.1-1.2 and HI 1.3 for in-line, multistage, separately coupled, overhung-impeller, centrifugal pump.
 - 2. Casing: Cast-iron or steel base and stainless-steel chamber.
 - 3. Impeller: Closed, stainless steel; statically and dynamically balanced and keyed to shaft.
 - 4. Shaft: Stainless steel.
 - 5. Seal: Mechanical.
 - 6. Bearing: Water-lubricated sleeve type.
- G. Pumps:
 - 1. Type: Vertical, can, as defined in HI 2.1-2.2 and HI 2.3 for in-line, barrel or can, lineshaft, vertical pump.
 - 2. Impeller: Closed, stainless steel; statically and dynamically balanced and keyed to shaft.
 - 3. Bowls: [Epoxy-coated cast iron] [Cast iron] <Insert material>.
 - 4. Shaft: Stainless steel.
 - 5. Seals: Mechanical and stuffing-box types.
 - 6. Bearings: Water-lubricated bushing type.
- H. Motors: Single speed, with [grease-lubricated] [or] [pre-greased, permanently shielded], ball-type bearings. Select motors that will not overload through full range of pump performance curve.
- I. Piping: [Copper tube and copper fittings] [Stainless-steel pipe and fittings] [Stainless-steel pipe and fitting headers and copper tube and copper fittings between headers and pump] [Galvanized-steel pipe and cast-iron fittings].
- J. Valves:
 - 1. Shutoff Valves NPS 2 (DN 50) and smaller: [Gate valve] [or] [two-piece, full-port ball valve], in each pump's suction and discharge piping.
 - 2. Shutoff Valves NPS 2-1/2 (DN 65) and Larger: [Gate valve] [or] [lug-type butterfly valve], in each pump's suction and discharge piping[and in inlet and outlet headers].
 - 3. Check Valves NPS 2 (DN 50) and smaller: [Silent] [or] [swing] type in each pump's discharge piping.
 - 4. Check Valves NPS 2-1/2 (DN 65) and Larger: Silent type in each pump's discharge piping.

5. Control Valves: Adjustable, automatic, [pilot-operated] [or] [direct-acting], pressure-17-13 OSU, College of Osteopathic Medicine at Cherokee Nation 22 1123.13 - 6 PACKAGED BOOSTER Childers Architect PUMPS reducing type in each pump's discharge piping.

- 6. Control Valves: Combination adjustable, automatic, [**pilot-operated**] [**or**] [**direct-acting**] pressure-reducing-and-check type in each pump's discharge piping.
- 7. Thermal-Relief Valve: Temperature-and-pressure relief type in pump's discharge header piping.
- K. Dielectric Fittings: With insulating material isolating joined dissimilar metals.
- L. Control Panel: Factory installed and connected as an integral part of booster pump; automatic for multiple-pump, constant-speed operation, with load control and protection functions.
 - 1. Control Logic: [Electromechanical system with switches, relays] [Solid-state system with transducers, programmable microprocessor], and other devices in the controller.
 - 2. Motor Controller: NEMA ICS 2, general-purpose, Class A, full-voltage, combinationmagnetic type with undervoltage release feature, motor-circuit-protector-type disconnect, and short-circuit protective device.
 - a. Control Voltage: [24] [120]-V ac, with integral control-power transformer.
 - 3. Motor Controller: NEMA ICS 2, solid-state, reduced-voltage type.
 - a. Control Voltage: [24] [120]-V ac, with integral control-power transformer.
 - 4. Enclosure: NEMA 250, [Type 1] [Type 3R] [Type 4] [Type 12] < Insert type>.
 - 5. Motor Overload Protection: Overload relay in each phase.
 - 6. Starting Devices: Hand-off-automatic selector switch for each pump in cover of control panel, plus pilot device for automatic control.
 - a. Duplex, Automatic, Alternating Starter: Switches lead pump to lag main pump and to two-pump operation.
 - b. Triplex, Sequence (Lead-Lag-Lag) Starter: Switches lead pump to one lag main pump and to three-pump operation.
 - 7. Pump Operation and Sequencing: [Current-] [or] [pressure-] sensing method.
 - a. Time Delay: Controls pump on-off operation; adjustable from [1 to 300] < Insert value> seconds.
 - 8. Instrumentation: Suction and discharge pressure gages.
 - 9. Lights: Running light for each pump.
 - 10. Alarm Signal Device: Sounds alarm when backup pumps are operating.
 - a. Time Delay: Controls alarm operation; adjustable from [1 to 300] <Insert value> seconds, with [automatic] [manual] reset.
 - 11. Thermal-bleed cutoff.
 - 12. [Low-suction-pressure] [Water-storage-tank, low-level] cutout.
 - 13. High-suction-pressure cutout.
 - 14. Low-discharge-pressure cutout.
 - 15. High-discharge-pressure cutout.
 - Direct Digital Control (DDC) System for HVAC: Provide auxiliary contacts for interface to [BACnet] [LonWorks] <Insert system> DDC system. DDC systems are specified in Section 23 0923 "Direct Digital Control (DDC) System for HVAC." Include the following:
 - a. On-off status of each pump.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1123.13 - 7

- b. Alarm status.
- M. Base: Structural steel.
- N. Capacities and Characteristics:
 - 1. Minimum Pressure Rating: [150 psig (1035 kPa)] [250 psig (1725 kPa)] <Insert value>.
 - 2. Booster-Pump Capacity: <Insert gpm (L/s)>.
 - 3. Minimum Inlet Pressure: <Insert psig (kPa)>.
 - 4. Maximum Inlet Pressure: <Insert psig (kPa)>.
 - 5. Discharge Pressure: < Insert psig (kPa)>.
 - 6. Low-Suction-Pressure Shutoff: < Insert psig (kPa)>.
 - 7. High-Suction-Pressure Shutoff: <Insert psig (kPa)>.
 - 8. Low-Discharge-Pressure Shutoff: < Insert psig (kPa)>.
 - 9. High-Discharge-Pressure Shutoff: < Insert psig (kPa)>.
 - 10. Header Size: <Insert NPS (DN)>.
 - 11. Lead Pump:
 - a. Capacity: <Insert gpm (L/s)>.
 - b. Total Dynamic Head: < Insert feet (kPa)>.
 - c. Speed: <Insert rpm>.
 - d. Control Valve:
 - 1) Minimum Size: <Insert NPS (DN)>.
 - 2) Maximum Pressure Drop: <Insert psig (kPa)>.
 - e. Electrical Characteristics:
 - 1) Motor Horsepower: < Insert value>.
 - 2) Volts: [120] [240] [277] [480] <Insert value>.
 - 3) Phases: [Single] [Three].
 - 4) Hertz: 60.
 - 12. Each of [Two] < Insert number > Lag Pumps:
 - a. Capacity: <Insert gpm (L/s)>.
 - b. Total Dynamic Head: < Insert feet (kPa)>.
 - c. Speed: <Insert rpm>.
 - d. Control Valve:
 - 1) Minimum Size: <Insert NPS (DN)>.
 - 2) Maximum Pressure Drop: < Insert psig (kPa)>.
 - e. Electrical Characteristics:
 - 1) Motor Horsepower: < Insert value>.
 - 2) Volts: [120] [240] [277] [480] <Insert value>.
 - 3) Phases: [Single] [Three].
 - 4) Hertz: 60.
 - 13. Booster-Pump Electrical Characteristics:
 - a. Full-Load Amperes: < Insert value>.
 - b. Minimum Circuit Ampacity: <Insert value>.
 - c. Maximum Overcurrent Protection: < Insert amperage>.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1123.13 - 8

2.3 SIMPLEX, VARIABLE-SPEED BOOSTER PUMPS

- A. <a>

 A.
- B. Description: Factory-assembled and -tested, fluid-handling system for domestic water, with pump, piping, valves, specialties, and controls, and mounted on base.
- C. Pump:
 - 1. Type: End suction as defined in HI 1.1-1.2 and HI 1.3 for end-suction, close-coupled, single-stage, overhung-impeller, centrifugal pump.
 - 2. Casing: Radially split; [bronze] [cast iron] [stainless steel].
 - 3. Impeller: Closed, [ASTM B 584 cast bronze] [stainless steel] <Insert material>; statically and dynamically balanced and keyed to shaft.
 - 4. Shaft and Shaft Sleeve: Steel shaft, with copper-alloy shaft sleeve and deflector.
 - 5. Seal: Mechanical.
 - 6. Orientation: Mounted [horizontally] [or] [vertically].
- D. Motor: Single speed, with [grease-lubricated] [or] [pre-greased, permanently shielded], balltype bearings, and directly mounted to pump casing. Select motor that will not overload through full range of pump performance curve.
- E. Piping: [Copper tube and copper fittings] [Stainless-steel pipe and fittings] [Stainless-steel pipe and fitting headers and copper tube and copper fittings between headers and pump] [Galvanized-steel pipe and cast-iron fittings].
- F. Valves:
 - 1. Shutoff Valves NPS 2 (DN 50) and Smaller: [Gate valve] [or] [two-piece, full-port ball valve], in pump suction and discharge piping.
 - 2. Shutoff Valves NPS 2-1/2 (DN 65) and Larger: [Gate valve] [or] [lug-type butterfly valve], in pump suction and discharge piping.
 - 3. Check Valve NPS 2 (DN 50) and Smaller: [Silent] [or] [swing] type in pump discharge piping.
 - 4. Check Valve NPS 2-1/2 (DN 65) and Larger: Silent type in pump discharge piping.
 - 5. Thermal-Relief Valve: Temperature-and-pressure relief type in pump discharge piping.
- G. Dielectric Fittings: With insulating material isolating joined dissimilar metals.
- H. Hydropneumatic Tank: Precharged[, **ASME-construction**,] diaphragm or bladder tank made of materials complying with NSF 61 Annex G.
- I. Control Panel: Factory installed and connected as an integral part of booster pump; automatic for single-pump, variable-speed operation, with load control and protection functions.
 - 1. Control Logic: Solid-state system with transducers, programmable microprocessor, VFC, and other devices in the controller.
 - 2. Motor Controller: NEMA ICS 2, variable-frequency, solid-state type.
 - a. Control Voltage: [24] [120]-V ac, with integral control-power transformer.
 - 3. Enclosure: NEMA 250, [Type 1] [Type 3R] [Type 4] [Type 12] < Insert type>.
 - 4. Motor Overload Protection: Overload relay in each phase.
 - 5. Starting Devices: Hand-off-automatic selector switch in cover of control panel, plus pilot device for automatic control.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1123.13 - 9

- 6. Pump Operation: Pressure-sensing method.
 - a. Time Delay: Controls pump on-off operation; adjustable from [1 to 300] < Insert value> seconds.
- 7. VFC: Voltage-source, pulse-width, modulating-frequency converter; installed in control panel.
- 8. Manual Bypass: Magnetic contactor arranged to transfer to constant-speed operation upon VFC failure.
- 9. Instrumentation: Suction and discharge pressure gages.
- 10. Light: Running light for pump.
- 11. Thermal-bleed cutoff.
- 12. [Low-suction-pressure] [Water-storage-tank, low-level] cutout.
- 13. High-suction-pressure cutout.
- 14. Low-discharge-pressure cutout.
- 15. High-discharge-pressure cutout.
- Direct Digital Control (DDC) System for HVAC: Provide auxiliary contacts for interface to [BACnet] [LonWorks] <Insert system> DDC system. DDC systems are specified in Section 23 0923 "Direct Digital Control (DDC) System for HVAC." Include the following:
 - a. On-off status of each pump.
 - b. Alarm status.
- J. Base: Structural steel.
- K. Capacities and Characteristics:
 - 1. Minimum Pressure Rating: [125 psig (860 kPa)] [150 psig (1035 kPa)] < Insert value>.
 - 2. Booster-Pump Capacity: <Insert gpm (L/s)>.
 - 3. Total Dynamic Head: < Insert feet (kPa)>.
 - 4. Speed: <Insert rpm>.
 - 5. Minimum Inlet Pressure: <Insert psig (kPa)>.
 - 6. Maximum Inlet Pressure: < Insert psig (kPa)>.
 - 7. Discharge Pressure: < Insert psig (kPa)>.
 - Low-Suction-Pressure Shutoff: <Insert psig (kPa)>.
 - 9. High-Suction-Pressure Shutoff: <Insert psig (kPa)>.
 - 10. Low-Discharge-Pressure Shutoff: < Insert psig (kPa)>.
 - 11. High-Discharge-Pressure Shutoff: < Insert psig (kPa)>.
 - 12. Inlet Size: <Insert NPS (DN)>.
 - 13. Outlet Size: <Insert NPS (DN)>.
 - 14. Electrical Characteristics:
 - a. Motor Horsepower: < Insert value>.
 - b. Volts: [120] [240] [277] [480] <Insert value>.
 - c. Phases: [Single] [Three].
 - d. Hertz: 60.
 - e. Full-Load Amperes: <**Insert value**>.
 - f. Minimum Circuit Ampacity: <Insert value>.
 - g. Maximum Overcurrent Protection: <Insert amperage>.
 - 15. Hydropneumatic Tank:
 - a. Minimum Water Volume: <Insert gal. (L)> capacity.
 - b. Pressure Rating: [125 psig (860 kPa)] [150 psig (1035 kPa)] [250 psig (1725 kPa)]
 Insert value>.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1123.13 - 10

c. Air Precharge: <Insert psig (kPa)>.

2.4 MULTIPLEX, VARIABLE-SPEED BOOSTER PUMPS

- A. <a>

 A.
- B. Description: Factory-assembled and -tested, fluid-handling system for domestic water, with pumps, piping, valves, specialties, and controls, and mounted on base.
- C. Pumps:
 - 1. Type: End suction as defined in HI 1.1-1.2 and HI 1.3 for end-suction, close-coupled, single-stage, overhung-impeller, centrifugal pump.
 - 2. Casing: Radially split; [bronze] [cast iron] [stainless steel].
 - 3. Impeller: Closed, [ASTM B 584 cast bronze] [stainless steel] <Insert material>; statically and dynamically balanced and keyed to shaft.
 - 4. Shaft and Shaft Sleeve: Steel shaft, with copper-alloy shaft sleeve and deflector.
 - 5. Seal: Mechanical.
 - 6. Orientation: Mounted [horizontally] [or] [vertically].
- D. Pumps:
 - 1. Type: End suction as defined in HI 1.1-1.2 and HI 1.3 for end-suction, frame-mounted, separately coupled, single-stage, overhung-impeller, centrifugal pump.[Include back-pullout design.]
 - 2. Casing: Radially split; [bronze] [cast iron] [stainless steel].
 - 3. Impeller: Closed, [ASTM B 584 cast bronze] [stainless steel] <Insert material>; statically and dynamically balanced and keyed to shaft.
 - 4. Shaft and Shaft Sleeve: Stainless-steel[or steel] shaft, with copper-alloy shaft sleeve and deflector.
 - 5. Seal: Mechanical.
 - 6. Bearing: [Grease-lubricated] [or] [pre-greased, permanently shielded] ball type.
 - 7. Coupling: Flexible, with metal guard.
- E. Pumps:
 - 1. Type: In line, single stage as defined in HI 1.1-1.2 and HI 1.3 for in-line, single-stage, close-coupled, overhung-impeller, centrifugal pump.
 - 2. Casing: Radially split; [bronze] [cast iron] [stainless steel].
 - 3. Impeller: Closed, [ASTM B 584 cast bronze] [stainless steel] <Insert material>; statically and dynamically balanced and keyed to shaft.
 - 4. Shaft and Shaft Sleeve: Stainless-steel[or steel] shaft, with copper-alloy shaft sleeve.
 - 5. Seal: Mechanical.
 - 6. Bearing: [Grease-lubricated] [or] [pre-greased, permanently shielded] ball type.
- F. Pumps:
 - 1. Type: Vertical, multistage as defined in HI 1.1-1.2 and HI 1.3 for in-line, multistage, separately coupled, overhung-impeller, centrifugal pump.
 - 2. Casing: Cast-iron or steel base and stainless-steel chamber.
 - 3. Impeller: Closed, stainless steel; statically and dynamically balanced and keyed to shaft.
 - 4. Shaft: Stainless steel.
 - 5. Seal: Mechanical.
 - 6. Bearing: Water-lubricated sleeve type.

17-13 OSU, College of Osteopathic Medicine at

Cherokee Nation Childers Architect 07-26-19

22 1123.13 - 11

- G. Pumps:
 - 1. Type: Vertical, can, as defined in HI 2.1-2.2 and HI 2.3 for in-line, barrel or can, lineshaft, vertical pump.
 - 2. Impeller: Closed, stainless steel; statically and dynamically balanced and keyed to shaft.
 - 3. Bowls: [Epoxy-coated cast iron] [Cast iron] <Insert material>.
 - 4. Shaft: Stainless steel.
 - 5. Seals: Mechanical and stuffing-box types.
 - 6. Bearings: Water-lubricated bushing type.
- H. Motors: Single speed, with [grease-lubricated] [or] [pre-greased, permanently shielded], ball-type bearings. Select motors that will not overload through full range of pump performance curve.
- I. Piping: [Copper tube and copper fittings] [Stainless-steel pipe and fittings] [Stainless-steel pipe and fitting headers and copper tube and copper fittings between headers and pump] [Galvanized-steel pipe and cast-iron fittings].
- J. Valves:
 - 1. Shutoff Valves NPS 2 (DN 50) and Smaller: [Gate valve] [or] [two-piece, full-port ball valve], in each pump's suction and discharge piping.
 - 2. Shutoff Valves NPS 2-1/2 (DN 65) and Larger: [Gate valve] [or] [lug-type butterfly valve], in each pump's suction and discharge piping[and in inlet and outlet headers].
 - 3. Check Valves NPS 2 (DN 50) and Smaller: [Silent] [or] [swing] type in each pump's discharge piping.
 - 4. Check Valves NPS 2-1/2 (DN 65) and Larger: Silent type in each pump's discharge piping.
 - 5. Thermal-Relief Valve: Temperature-and-pressure relief type in pump's discharge header piping.
- K. Dielectric Fittings: With insulating material isolating joined dissimilar metals.
- L. Control Panel: Factory installed and connected as an integral part of booster pump; automatic for multiple-pump, variable-speed operation, with load control and protection functions.
 - 1. Control Logic: Solid-state system with transducers, programmable microprocessor, VFC, and other devices in controller. Install VFC for pump motors larger than 25 hp in separate panel; same type as motor control panel enclosure.
 - 2. Motor Controller: NEMA ICS 2, variable-frequency, solid-state type.
 - a. Control Voltage: [24] [120]-V ac, with integral control-power transformer.
 - 3. Enclosure: NEMA 250, [Type 1] [Type 3R] [Type 4] [Type 12] < Insert type>.
 - 4. Motor Overload Protection: Overload relay in each phase.
 - 5. Starting Devices: Hand-off-automatic selector switch for each pump in cover of control panel, plus pilot device for automatic control.
 - a. Duplex, Automatic, Alternating Starter: Switches lead pump to lag main pump and to two-pump operation.
 - b. Triplex, Sequence (Lead-Lag-Lag) Starter: Switches lead pump to one lag main pump and to three-pump operation.

Pump Operation and Sequencing: [Pressure-sensing method] [or] [flow-sensing method] [Pressure-sensing method for lead pump and flow-sensing method for lag
 17-13 OSU, College of Osteopathic Medicine at Cherokee Nation
 Cherokee Nation
 Childers Architect

pumps].

- a. Time Delay: Controls pump on-off operation; adjustable from [1 to 300] < Insert value> seconds.
- 7. VFC: Voltage-source, pulse-width, modulating-frequency converter for [each] [lead] pump.
- 8. Manual Bypass: Magnetic contactor arranged to transfer to constant-speed operation upon VFC failure.
- 9. Instrumentation: Suction and discharge pressure gages.
- 10. Lights: Running light for each pump.
- 11. Alarm Signal Device: Sounds alarm when backup pumps are operating.
 - a. Time Delay: Controls alarm operation; adjustable from [1 to 300] <Insert value> seconds, with [automatic] [manual] reset.
- 12. Thermal-bleed cutoff.
- 13. [Low-suction-pressure] [Water-storage-tank, low-level] cutout.
- 14. High-suction-pressure cutout.
- 15. Low-discharge-pressure cutout.
- 16. High-discharge-pressure cutout.
- Direct Digital Control (DDC) System for HVAC: Provide auxiliary contacts for interface to [BACnet] [LonWorks] <Insert system> DDC system. DDC systems are specified in Section 23 0923 "Direct Digital Control (DDC) System for HVAC." Include the following:
 - a. On-off status of each pump.
 - b. Alarm status.
- M. Base: Structural steel.
- N. Capacities and Characteristics:
 - 1. Minimum Pressure Rating: [150 psig (1035 kPa)] [250 psig (1725 kPa)] < Insert value>.
 - 2. Booster-Pump Capacity: <Insert gpm (L/s)>.
 - 3. Minimum Inlet Pressure: <Insert psig (kPa)>.
 - 4. Maximum Inlet Pressure: <Insert psig (kPa)>.
 - 5. Discharge Pressure: < Insert psig (kPa)>.
 - 6. Low-Suction-Pressure Shutoff: <Insert psig (kPa)>.
 - 7. High-Suction-Pressure Shutoff: <**Insert psig** (kPa)>.
 - 8. Low-Discharge-Pressure Shutoff: < Insert psig (kPa)>.
 - 9. High-Discharge-Pressure Shutoff: <Insert psig (kPa)>.
 - 10. Header Size: <Insert NPS (DN)>.
 - 11. Lead Pump:
 - a. Capacity: <Insert gpm (L/s)>.
 - b. Total Dynamic Head: < Insert feet (kPa)>.
 - c. Speed: <Insert rpm>.
 - d. Electrical Characteristics:
 - 1) Motor Horsepower: < Insert value>.
 - 2) Volts: [120] [240] [277] [480] <Insert value>.
 - 3) Phases: [Single] [Three].
 - 4) Hertz: 60.

12. Each of [**Two**] <**Insert number**> Lag Pumps:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1123.13 - 13

DOMESTIC-WATER PACKAGED BOOSTER PUMPS

- a. Capacity: <Insert gpm (L/s)>.
- b. Total Dynamic Head: < Insert feet (kPa)>.
- c. Speed: <Insert rpm>.
- d. Electrical Characteristics:
 - 1) Motor Horsepower: <**Insert value**>.
 - 2) Volts: [120] [240] [277] [480] < Insert value>.
 - 3) Phases: [Single] [Three].
 - 4) Hertz: 60.
- 13. Booster-Pump Electrical Characteristics:
 - a. Full-Load Amperes: < Insert value>.
 - b. Minimum Circuit Ampacity: <Insert value>.
 - c. Maximum Overcurrent Protection: <Insert amperage>.

2.5 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors.
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in NFPA 70.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for booster pumps to verify actual locations of piping connections before booster-pump installation.

3.2 INSTALLATION

- A. Equipment Mounting:
 - 1. Install booster pumps on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in [Section 03 3000 "Cast-in-Place Concrete."] [Section 03 3053 "Miscellaneous Cast-in-Place Concrete."]
 - 2. Comply with requirements for vibration isolation and seismic control devices specified in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment"
 - 3. Comply with requirements for vibration isolation devices specified in Section 22 0548.13 "Vibration Controls for Plumbing Piping and Equipment."
- B. Support connected domestic-water piping so weight of piping is not supported by booster pumps.

3.3 CONNECTIONS

- A. Comply with requirements for piping specified in Section 22 1116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect domestic-water piping to booster pumps. Install suction and discharge pipe equal to or greater than size of system suction and discharge [headers] [piping].
 - Install shutoff valves on piping connections to booster-pump suction and discharge [headers] [piping]. Install ball, butterfly, or gate valves same size as suction and discharge [headers] [piping]. Comply with requirements for general-duty valves specified in Section 22 0523.12 "Ball Valves for Plumbing Piping," Section 22 0523.13 "Butterfly Valves for Plumbing Piping," and Section 22 0523.15 "Gate Valves for Plumbing Piping."
 - Install union, flanged, or grooved-joint connections on suction and discharge [headers] [piping] at connection to domestic-water piping. Comply with requirements for unions and flanges specified in Section 22 1116 "Domestic Water Piping."
 - 3. Install valved bypass, same size as and between piping, at connections to booster-pump suction and discharge [headers] [piping]. Comply with requirements for domestic-water piping specified in Section 22 1116 "Domestic Water Piping."
 - 4. Install flexible connectors, same size as piping, on piping connections to booster-pump suction and discharge [headers] [piping]. Comply with requirements for flexible connectors specified in Section 22 1116 "Domestic Water Piping."
 - 5. Install piping adjacent to booster pumps to allow service and maintenance.

3.4 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Perform visual and mechanical inspection.
 - 2. Leak Test: After installation, charge booster pump and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start booster pumps to confirm proper motor rotation and booster-pump operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Pumps and controls will be considered defective if they do not pass tests and inspections.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1123.13 - 15

DOMESTIC-WATER PACKAGED BOOSTER PUMPS E. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. [Engage a factory-authorized service representative to perform] [Perform] startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. <Insert startup steps if any>.

3.7 ADJUSTING

- A. Adjust booster pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust pressure set points.
- C. Occupancy Adjustments: When requested within [12] <Insert number> months of date of Substantial Completion, provide on-site assistance in adjusting booster pump to suit actual occupied conditions. Provide up to [two] <Insert number> visits to Project during other-than-normal occupancy hours for this purpose.

3.8 DEMONSTRATION

A. [Engage a factory-authorized service representative to train] [Train] Owner's maintenance personnel to adjust, operate, and maintain booster pumps.

END OF SECTION

SECTION 22 1316

SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.
 - 2. Specialty pipe fittings.
 - 3. Encasement for underground metal piping.
- B. Related Requirements:
 - 1. Section 22 1313 "Facility Sanitary Sewers" for sanitary sewerage piping and structures outside the building.
 - 2. Section 22 1329 "Sanitary Sewerage Pumps" for effluent and sewage pumps.
 - 3. Section 22 6600 "Chemical-Waste Systems for Laboratory and Healthcare Facilities" for chemical-waste and vent piping systems.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For hubless, single-stack drainage system. Include plans, elevations, sections, and details.

1.4 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For waste and vent piping, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Detailed description of piping anchorage devices on which the certification is based and their installation requirements.
- B. Field quality-control reports.

22 1316 - 1

1.5 FIELD CONDITIONS

- A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Owner's Representative no fewer than 5 days in advance of proposed interruption of sanitary waste service.
 - 2. Do not proceed with interruption of sanitary waste service without Owner's written permission.

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10-foot head of water.
 - 2. Waste, Force-Main Piping: 100 psig.
- B. Seismic Performance: Soil, waste, and vent piping and support and installation shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

2.2 PIPING MATERIALS

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. The product descriptions listed in the section may not all be used on this project. Refer to the Piping Material Schedules on the drawings for the specific application for each product or material. Products not shown on the schedule for the specific application may not be substituted without pre-approval from the Engineer. Where there is a conflict between the drawing schedule and specifications, the drawing schedule shall take precedent.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 74, Service and Extra Heavy class(es).
- B. Gaskets: ASTM C 564, rubber.
- C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. Single-Stack Aerator Fittings: ASME B16.45, hubless, cast-iron aerator and deaerator drainage fittings.
- C. CISPI, Hubless-Piping Couplings:

```
17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation
Childers Architect
07-26-19
```

22 1316 - 2

- 1. Standards: ASTM C 1277 and CISPI 310.
- 2. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- D. Heavy-Duty, Hubless-Piping Couplings:
 - 1. Standards: ASTM C 1277 and ASTM C 1540.
 - 2. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- E. Cast-Iron, Hubless-Piping Couplings:
 - 1. Standard: ASTM C 1277.
 - 2. Description: Two-piece ASTM A 48/A 48M, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.5 GALVANIZED-STEEL PIPE AND FITTINGS

- A. Galvanized-Steel Pipe: ASTM A 53/A 53M, Type E, Standard Weight class. Include square-cutgrooved or threaded ends matching joining method.
- B. Cast-Iron Drainage Fittings: ASME B16.12, threaded.
- C. Steel Pipe Pressure Fittings:
 - 1. Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106/A 106M, Schedule 40, seamless steel pipe. Include ends matching joining method.
 - 2. Malleable-Iron Unions: ASME B16.39; Class 150; hexagonal-stock body with ball-andsocket, metal-to-metal, bronze seating surface; and female threaded ends.
 - 3. Gray-Iron, Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- D. Cast-Iron Flanges: ASME B16.1, Class 125.
 - 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8inch maximum thickness unless thickness or specific material is indicated.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- E. Grooved-Joint, Galvanized-Steel-Pipe Appurtenances:
 - Galvanized, Grooved-End Fittings for Galvanized-Steel Piping: ASTM A 536 ductile-iron castings, ASTM A 47/A 47M malleable-iron castings, ASTM A 234/A 234M forged steel fittings, or ASTM A 106/A 106M steel pipes with dimensions matching ASTM A 53/A 53M steel pipe, and complying with AWWA C606 for grooved ends.
 - 2. Grooved Mechanical Couplings for Galvanized-Steel Piping: ASTM F 1476, Type I. Include ferrous housing sections with continuous curved keys; EPDM-rubber gasket suitable for hot and cold water; and bolts and nuts.

2.6 STAINLESS-STEEL PIPE AND FITTINGS

- A. Pipe and Fittings: ASME A112.3.1, drainage pattern with socket and spigot ends.
- B. Internal Sealing Rings: Elastomeric gaskets shaped to fit socket groove.

22 1316 - 3

2.7 DUCTILE-IRON PIPE AND FITTINGS

- A. Ductile-Iron, Mechanical-Joint Piping:
 - 1. Ductile-Iron Pipe: AWWA C151/A21.51, with mechanical-joint bell and plain spigot ends unless grooved or flanged ends are indicated.
 - 2. Ductile-Iron Fittings: AWWA C110/A21.10, mechanical-joint, ductile- or gray-iron standard pattern or AWWA C153/A21.53, ductile-iron compact pattern.
 - 3. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Ductile-Iron, Push-on-Joint Piping:
 - 1. Ductile-Iron Pipe: AWWA C151/A21.51, with push-on-joint bell and plain spigot ends unless grooved or flanged ends are indicated.
 - 2. Ductile-Iron Fittings: AWWA C110/A21.10, push-on-joint, ductile- or gray-iron standard pattern or AWWA C153/A21.53, ductile-iron compact pattern.
 - 3. Gaskets: AWWA C111/A21.11, rubber.
- C. Ductile-Iron, Grooved-Joint Piping: AWWA C151/A21.51, with round-cut-grooved ends according to AWWA C606.
- D. Ductile-Iron, Grooved-End Pipe Appurtenances:
 - 1. Grooved-End, Ductile-Iron Fittings: ASTM A 536 ductile-iron castings, with dimensions matching AWWA C110/A 21.10 ductile-iron pipe or AWWA C153/A 21.53 ductile-iron fittings, and complying with AWWA C606 for grooved ends.
 - 2. Grooved Mechanical Couplings for Ductile-Iron Pipe: ASTM F 1476, Type I. Include ferrous housing sections with continuous curved keys; EPDM-rubber center-leg gasket suitable for hot and cold water; and bolts and nuts.

2.8 COPPER TUBE AND FITTINGS

- A. Copper Type DWV Tube: ASTM B 306, drainage tube, drawn temper.
- B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solderjoint fittings.
- C. Hard Copper Tube: ASTM B 88, Type L and Type M, water tube, drawn temper.
- D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.
- E. Copper Pressure Fittings:
 - 1. Copper Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint fittings. Furnish wrought-copper fittings if indicated.
 - 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
- F. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 - 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8inch maximum thickness unless thickness or specific material is indicated.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1316 - 4

G. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.9 ABS PIPE AND FITTINGS

- A. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping and "NSF-sewer" for plastic sewer piping.
- B. Solid-Wall ABS Pipe: ASTM D 2661, Schedule 40.
- C. Cellular-Core ABS Pipe: ASTM F 628, Schedule 40.
- D. ABS Socket Fittings: ASTM D 2661, made to ASTM D 3311, drain, waste, and vent patterns.
- E. Solvent Cement: ASTM D 2235.

2.10 PVC PIPE AND FITTINGS

- A. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping and "NSF-sewer" for plastic sewer piping.
- B. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
- C. Cellular-Core PVC Pipe: ASTM F 891, Schedule 40.
- D. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- E. Adhesive Primer: ASTM F 656.
- F. Solvent Cement: ASTM D 2564.

2.11 SPECIALTY PIPE FITTINGS

- A. Transition Couplings:
 - 1. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 - 2. Unshielded, Nonpressure Transition Couplings:
 - a. Standard: ASTM C 1173.
 - b. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - c. End Connections: Same size as and compatible with pipes to be joined.
 - d. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

- 3. Shielded, Nonpressure Transition Couplings:
 - a. Standard: ASTM C 1460.
 - b. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - c. End Connections: Same size as and compatible with pipes to be joined.
- 4. Pressure Transition Couplings:
 - a. Standard: AWWA C219.
 - b. Description: Metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.
 - c. Center-Sleeve Material: Manufacturer's Standard.
 - d. Gasket Material: Natural or synthetic rubber.
 - e. Metal Component Finish: Corrosion-resistant coating or material.
- B. Dielectric Fittings:
 - 1. Dielectric Unions:
 - a. Description:
 - 1) Standard: ASSE 1079.
 - 2) Pressure Rating: 125 psig minimum at 180 deg F.
 - 3) End Connections: Solder-joint copper alloy and threaded ferrous.
 - 2. Dielectric Flanges:

a.

- b. Description:
 - 1) Standard: ASSE 1079.
 - 2) Factory-fabricated, bolted, companion-flange assembly.
 - 3) Pressure Rating: 125 psig minimum at 180 deg F.
 - 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
- 3. Dielectric-Flange Insulating Kits:
 - a. Description:
 - 1) Nonconducting materials for field assembly of companion flanges.
 - 2) Pressure Rating: 150 psig.
 - 3) Gasket: Neoprene or phenolic.
 - 4) Bolt Sleeves: Phenolic or polyethylene.
 - 5) Washers: Phenolic with steel backing washers.
- 4. Dielectric Nipples:
 - a. Description:
 - 1) Standard: IAPMO PS 66.
 - 2) Electroplated steel nipple.

- 3) Pressure Rating: 300 psig at 225 deg F.
- 4) End Connections: Male threaded or grooved.
- 5) Lining: Inert and noncorrosive, propylene.

2.12 ENCASEMENT FOR UNDERGROUND METAL PIPING

- A. Standard: ASTM A 674 or AWWA C105/A 21.5.
- B. Material: high-density, cross-laminated polyethylene film of 0.004-inch minimum thickness.
- C. Form: tube.
- D. Color: Black or natural.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 31 2000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.
 - 1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
 - 2. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.

22 1316 - 7

- J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- K. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends.
 - 1. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 - 2. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe.
 - a. Straight tees, elbows, and crosses may be used on vent lines.
 - 3. Do not change direction of flow more than 90 degrees.
 - 4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.
 - a. Reducing size of waste piping in direction of flow is prohibited.
- L. Lay buried building waste piping beginning at low point of each system.
 - 1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
 - 2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 - 3. Maintain swab in piping and pull past each joint as completed.
- M. Install soil and waste and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Sanitary Waste: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Sanitary Waste Piping: 2 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- N. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 - 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.
- O. Install steel piping according to applicable plumbing code.
- P. Install stainless-steel piping according to ASME A112.3.1 and applicable plumbing code.
- Q. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."
- R. Install aboveground ABS piping according to ASTM D 2661.
- S. Install aboveground PVC piping according to ASTM D 2665.
- T. Install underground ABS and PVC piping according to ASTM D 2321.
- U. Install engineered soil and waste and vent piping systems as follows:

- 1. Combination Waste and Vent: Comply with standards of authorities having jurisdiction.
- 2. Hubless, Single-Stack Drainage System: Comply with ASME B16.45 and hubless, singlestack aerator fitting manufacturer's written installation instructions.
- 3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.
- V. Install underground, ductile-iron, force-main piping according to AWWA C600.
 - 1. Install buried piping inside building between wall and floor penetrations and connection to sanitary sewer piping outside building with restrained joints.
 - 2. Anchor pipe to wall or floor. Install thrust-block supports at vertical and horizontal offsets.
 - 3. Install encasement on piping according to ASTM A 674 or AWWA C105/A 21.5.
- W. Install underground, copper, force-main tubing according to CDA's "Copper Tube Handbook."
 - 1. Install encasement on piping according to ASTM A 674 or AWWA C105/A 21.5.
- X. Install force mains at elevations indicated.
- Y. Plumbing Specialties:
 - 1. Install backwater valves in sanitary waster gravity-flow piping.
 - a. Comply with requirements for backwater valves specified in Section 22 1319 "Sanitary Waste Piping Specialties."
 - 2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary waste gravity-flow piping.
 - a. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping.
 - b. Comply with requirements for cleanouts specified in Section 22 1319 "Sanitary Waste Piping Specialties."
 - 3. Install drains in sanitary waste gravity-flow piping.
 - a. Comply with requirements for drains specified in Section 22 1319 "Sanitary Waste Piping Specialties."
- Z. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- AA. Install sleeves for piping penetrations of walls, ceilings, and floors.
 - 1. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- BB. Install sleeve seals for piping penetrations of concrete walls and slabs.
 - 1. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- CC. Install escutcheons for piping penetrations of walls, ceilings, and floors.
 - 1. Comply with requirements for escutcheons specified in Section 22 0518 "Escutcheons for Plumbing Piping."

22 1316 - 9

3.3 JOINT CONSTRUCTION

- A. Join hub-and-spigot, cast-iron soil piping with gasket joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Join hub-and-spigot, cast-iron soil piping with calked joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead-and-oakum calked joints.
- C. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
- D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1.
 - 1. Cut threads full and clean using sharp dies.
 - 2. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - a. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - b. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
 - c. Do not use pipe sections that have cracked or open welds.
- E. Join stainless-steel pipe and fittings with gaskets according to ASME A112.3.1.
- F. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.
- G. Grooved Joints: Cut groove ends of pipe according to AWWA C606. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections, over gasket, with keys seated in piping grooves. Install and tighten housing bolts.
- H. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.
- I. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 appendixes.
 - 3. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in ODs.
 - 2. In Waste Drainage Piping: Shielded, nonpressure transition couplings.
 - 3. In Aboveground Force Main Piping: Fitting-type transition couplings.
 - 4. In Underground Force Main Piping:
 - a. NPS 1-1/2 and Smaller: Fitting-type transition couplings.

22 1316 - 10

- b. NPS 2 and Larger: Pressure transition couplings.
- B. Dielectric Fittings:
 - 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 - 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples or unions.
 - 3. Dielectric Fittings for NPS 2-1/2 to NPS 4 Use dielectric flange kits or nipples.
 - 4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 VALVE INSTALLATION

- A. Comply with requirements in Section 22 0523.12 "Ball Valves for Plumbing Piping," Section 22 0523.13 "Butterfly Valves for Plumbing Piping," Section 22 0523.14 "Check Valves for Plumbing Piping," and Section 22 0523.15 "Gate Valves for Plumbing Piping" for generalduty valve installation requirements.
- B. Shutoff Valves:
 - 1. Install shutoff valve on each sewage pump discharge.
 - 2. Install gate or full-port ball valve for piping NPS 2 and smaller.
 - 3. Install gate valve for piping NPS 2-1/2 and larger.
- C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.
- D. Backwater Valves: Install backwater valves in piping subject to backflow.
 - 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type unless otherwise indicated.
 - 2. Floor Drains: Drain outlet backwater valves unless drain has integral backwater valve.
 - 3. Install backwater valves in accessible locations.
 - 4. Comply with requirements for backwater valve specified in Section 22 1319 "Sanitary Waste Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for seismic-restraint devices specified in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Comply with requirements for pipe hanger and support devices and installation specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
 - 3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 - 5. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 6. Install individual, straight, horizontal piping runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

22 1316 - 11

- 7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- 8. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 - 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- G. Install supports for vertical cast-iron soil piping every 15 feet.
- H. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 - 3. NPS 2: 10 feet with 3/8-inch rod.
 - 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 - 5. NPS 3: 12 feet with 1/2-inch rod.
 - 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 - 7. NPS 6 and NPS 8: 12 feet with 3/4-inch rod.
 - 8. NPS 10 and NPS 12: 12 feet with 7/8-inch rod.
- I. Install supports for vertical steel piping every 15 feet.
- J. Install hangers for stainless-steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 2: 84 inches with 3/8-inch rod.
 - 2. NPS 3: 96 inches with 1/2-inch rod.
 - 3. NPS 4: 108 inches with 1/2-inch rod.
 - 4. NPS 6: 10 feet with 5/8-inch rod.
- K. Install supports for vertical stainless-steel piping every 10 feet.
- L. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 4. NPS 3 and NPS 5: 10 feet with 1/2-inch rod.
 - 5. NPS 6: 10 feet with 5/8-inch rod.

- 6. NPS 8: 10 feet with 3/4-inch rod.
- M. Install supports for vertical copper tubing every 10 feet.
- N. Install hangers for ABS and PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.
- O. Install supports for vertical ABS and PVC piping every 48 inches.
- P. Support piping and tubing not listed above according to MSS SP-58 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect waste and vent piping to the following:
 - 1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 - 5. Install horizontal backwater valves in pit with pit cover flush with floor.
 - 6. Comply with requirements for backwater valves, cleanouts, and drains specified in Section 22 1319 "Sanitary Waste Piping Specialties."
 - 7. Equipment: Connect waste piping as indicated.
 - a. Provide shutoff valve if indicated and union for each connection.
 - b. Use flanges instead of unions for connections NPS 2-1/2 and larger.
- D. Connect force-main piping to the following:
 - 1. Sanitary Sewer: To exterior force main.
 - 2. Sewage Pump: To sewage pump discharge.
- E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- F. Make connections according to the following unless otherwise indicated:

- 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
- 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

- A. Identify exposed sanitary waste and vent piping.
- B. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary waste and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.
 - a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.
 - a. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.
 - a. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water.
 - b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.
 - c. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.

22 1316 - 14

- a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg.
- b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
- c. Air pressure must remain constant without introducing additional air throughout period of inspection.
- d. Inspect plumbing fixture connections for gas and water leaks.
- 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
- 6. Prepare reports for tests and required corrective action.
- E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved.
 - a. Expose work that was covered or concealed before it was tested.
 - 2. Cap and subject piping to static-water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials.
 - a. Isolate test source and allow to stand for four hours.
 - b. Leaks and loss in test pressure constitute defects that must be repaired.
 - 3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 4. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.
- D. Exposed ABS and PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.
- E. Repair damage to adjacent materials caused by waste and vent piping installation.

END OF SECTION

22 1316 - 16

SECTION 22 1319

SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backwater valves.
 - 2. Cleanouts.
 - 3. Air-admittance valves.
 - 4. Roof flashing assemblies.
 - 5. Through-penetration firestop assemblies.
 - 6. Miscellaneous sanitary drainage piping specialties.
 - 7. FOG disposal systems.
- B. Related Requirements:
 - 1. Section 22 1423 "Storm Drainage Piping Specialties" for trench drains for storm water, channel drainage systems for storm water, roof drains, and catch basins.
 - 2. Section 33 4100 "Storm Utility Drainage Piping" for storm drainage piping and piping specialties outside the building.

1.3 **DEFINITIONS**

- A. ABS: Acrylonitrile-butadiene-styrene.
- B. FOG: Fats, oils, and greases.
- C. PVC: Polyvinyl chloride.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include rated capacities, operating characteristics, and accessories for the following:
 - 1. FOG disposal systems.
- B. Shop Drawings:
 - 1. Show fabrication and installation details for frost-resistant vent terminals.
 - 2. Wiring Diagrams: Power, signal, and control wiring.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1319 - 1

1.5 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For FOG disposal systems, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sanitary waste piping specialties to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Cultures: Provide 1-gal. bottles of bacteria culture recommended by manufacturer of FOG disposal systems equal to 200 percent of amount installed, but no fewer than two 1-gal. bottles.

PART 2 - PRODUCTS

2.1 The product descriptions listed in the section may not all be used on this project. Refer to the Equipment Schedules and details on the drawings for the specific application for each product or material. Products not shown on the schedule or details for the specific application may not be substituted without pre-approval from the Engineer. Where there is a conflict between the drawing schedule and specifications, the drawing schedule shall take precedent.

2.2 ASSEMBLY DESCRIPTIONS

- A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14 for plastic sanitary waste piping specialty components.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing, and marked for intended location and application.

2.3 BACKWATER VALVES

- A. Horizontal, Cast-Iron Backwater Valves:
 - 1. Standard: ASME A112.14.1.
 - 2. Size: Same as connected piping.
 - 3. Body: Cast iron.
 - 4. Cover: Cast iron with bolted or threaded access check valve.
 - 5. End Connections: Hub and spigot or hubless.
 - 6. Type Check Valve: Removable, bronze, swing check, factory assembled, or field modified to hang open for airflow unless subject to backflow condition.
 - 7. Extension: ASTM A 74, Service class; full-size, cast-iron, soil-pipe extension to fieldinstalled cleanout at floor; replaces backwater valve cover.
- B. Drain-Outlet Backwater Valves:
 - 1. Size: Same as floor drain outlet.
 - 2. Body: Cast iron or bronze made for vertical installation in bottom outlet of floor drain.
 - 3. Check Valve: Removable ball float.
 - 4. Inlet: Threaded.
 - 5. Outlet: Threaded or spigot.
- C. Horizontal, Plastic Backwater Valves:
 - 1. Size: Same as connected piping.
 - 2. Body: ABS or PVC.
 - 3. Cover: Same material as body with threaded access to check valve.
 - 4. Check Valve: Removable swing check.
 - 5. End Connections: Socket type.

2.4 CLEANOUTS

- A. Cast-Iron Exposed Cleanouts:
 - 1. Standard: ASME A112.36.2M.
 - 2. Size: Same as connected drainage piping
 - 3. Body Material: Hub-and-spigot, cast-iron soil pipe T-branch or Hubless, cast-iron soil pipe test tee as required to match connected piping per the piping schedules on drawings.
 - 4. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- B. Stainless-Steel Exposed Cleanouts:
 - 1. Standard: ASME A112.3.1.
 - 2. Size: Same as connected drainage piping
 - 3. Body Material: Stainless-steel tee with side cleanout as required to match connected piping.
 - 4. Closure: Stainless-steel plug with seal.
- C. Cast-Iron Exposed Floor Cleanouts:
 - 1. Standard: ASME A112.36.2M heavy-duty, adjustable housing, adjustable housing cleanout.
 - 2. Size: Same as connected branch.
 - 3. Body or Ferrule: Cast iron.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1319 - 3

- 4. Clamping Device: Required.
- 5. Outlet Connection: Same type as pipe.
- 6. Closure: Brass plug.
- 7. Adjustable Housing Material: Cast iron with threads, setscrews or other device.
- 8. Frame and Cover Material and Finish: Polished bronze material and finish.
- 9. Frame and Cover Shape: Round.
- 10. Top Loading Classification: Extra Heavy Duty.
- 11. Riser: ASTM A 74, Extra-Heavy class, cast-iron drainage pipe fitting and riser to cleanout.
- D. Stainless-Steel Exposed Floor Cleanouts:
 - 1. Standard: ASME A112.3.1.
 - 2. Size: Same as connected branch.
 - 3. Housing: Stainless steel.
 - 4. Closure: Stainless steel with seal.
 - 5. Riser: ASTM A 74, Extra-Heavy stainless-steel drainage pipe fitting and riser to cleanout.
 - 6. Body or Ferrule: Stainless steel.
 - 7. Clamping Device: Required.
 - 8. Outlet Connection: Same as pipe.
 - 9. Closure: Brass plug.
 - 10. Adjustable Housing Material: Cast iron with threads, setscrews or other device.
 - 11. Frame and Cover Material and Finish: Polished bronze.
 - 12. Frame and Cover Shape: Round.
 - 13. Top Loading Classification: Extra Heavy Duty.
- E. Cast-Iron Wall Cleanouts:
 - 1. Standard: ASME A112.36.2M. Include wall access.
 - 2. Size: Same as connected drainage piping.
 - 3. Body: Hub-and-spigot, cast-iron soil pipe T-branch or Hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 4. Closure Plug:
 - a. Brass.
 - b. Countersunk or raised head.
 - c. Drilled and threaded for cover attachment screw.
 - d. Size: Same as or not more than one size smaller than cleanout size.
 - 5. Wall Access: Round, stainless-steel cover plate with screw.
- F. Plastic Floor Cleanouts:
 - 1. Size: Same as connected branch.
 - 2. Body: PVC.
 - 3. Closure Plug: PVC.
 - 4. Riser: Drainage pipe fitting and riser to cleanout of same material as drainage piping.

2.5 AIR-ADMITTANCE VALVES

- A. Fixture Air-Admittance Valves:
 - 1. Standard: ASSE 1051, Type A for single fixture or Type B for branch piping.
 - 2. Housing: Plastic.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1319 - 4

- 3. Operation: Mechanical sealing diaphragm.
- 4. Size: Same as connected fixture or branch vent piping.
- B. Stack Air-Admittance Valves:
 - 1. Standard: ASSE 1050 for vent stacks.
 - 2. Housing: Plastic.
 - 3. Operation: Mechanical sealing diaphragm.
 - 4. Size: Same as connected stack vent or vent stack.
- C. Wall Box for Air-Admittance Valves:
 - 1. Description: White plastic housing with white plastic grille, made for recessed installation. Include bottom pipe connection and space to contain one air-admittance valve.
 - 2. Size: Approximately 9 inches wide by 8 inches high by 4 inches deep.

2.6 ROOF FLASHING ASSEMBLIES

- A. Roof Flashing Assemblies:
 - 1. Description: Manufactured assembly made of 6.0-lb/sq. ft., 0.0938-inch-thick, lead flashing collar and skirt extending at least 8 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.
 - a. Low-Silhouette Vent Cap: With vandal-proof vent cap.

2.7 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

- A. Through-Penetration Firestop Assemblies:
 - 1. Standard: UL 1479 assembly of sleeve-and-stack fitting with firestopping plug.
 - 2. Size: Same as connected soil, waste, or vent stack.
 - 3. Sleeve: Molded-PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 - 4. Stack Fitting for plastic stacks: ASTM A 48/A 48M, gray-iron, hubless-pattern wye branch with neoprene O-ring at base and gray-iron plug in thermal-release harness. Include PVC protective cap for plug.
 - 5. Special Coating for corrosion-resistant plastic stacks: Corrosion resistant on interior of fittings.

2.8 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

- A. Open Drains:
 - 1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, castiron soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564 rubber gaskets.
 - 2. Size: Same as connected waste piping with increaser fitting of size indicated.
- B. Deep-Seal Traps:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1319 - 5

- 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
- 2. Size: Same as connected waste piping.
 - a. NPS 2: 4-inch- minimum water seal.
 - b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.
- C. Floor-Drain, Trap-Seal Primer Fittings:
 - 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 - 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.
- D. Air-Gap Fittings:
 - 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 - 2. Body: Bronze or cast iron.
 - 3. Inlet: Opening in top of body.
 - 4. Outlet: Larger than inlet.
 - 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.
- E. Sleeve Flashing Device:
 - 1. Description: Manufactured, cast-iron fitting, with clamping device that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 - 2. Size: As required for close fit to riser or stack piping.
- F. Stack Flashing Fittings:
 - 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 - 2. Size: Same as connected stack vent or vent stack.
- G. Vent Caps:
 - 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
 - 2. Size: Same as connected stack vent or vent stack.
- H. Frost-Resistant Vent Terminals:
 - 1. Description: Manufactured or shop-fabricated assembly constructed of copper, leadcoated copper, or galvanized steel.
 - 2. Design: To provide 1-inch enclosed air space between outside of pipe and inside of flashing collar extension, with counterflashing.
- I. Expansion Joints:
 - 1. Standard: ASME A112.6.4.
 - 2. Body: Cast iron with bronze sleeve, packing, and gland.
 - 3. End Connections: Matching connected piping.

22 1319 - 6

4. Size: Same as connected soil, waste, or vent piping.

2.9 FOG DISPOSAL SYSTEMS

- A. FOG Disposal Systems:
 - 1. Standard: ASME A112.14.6, for removing solids from and breaking down and digesting suspended fats, oils, and greases from food-preparation or processing wastewater.
 - 2. Flow-Control Fitting: Matching unit size.
 - 3. Strainer Unit: Stainless-steel housing with aluminum cover and removable-basket-type, stainless-steel, wire-mesh strainer. Include pressure plug instead of cover. Include extra basket. Include stainless-steel extension.
 - 4. Media Chamber: Stainless-steel housing and aluminum cover, with internal baffles, piping, plastic coalescing surfaces, and clarifier section with test ports. Include stainless-steel extension.
 - 5. Shelf: Stainless steel, 19-1/2 inches wide by 13 inches high by 8-3/4 inches deep, for metering pump, control devices, and culture bottle.
 - 6. Culture Metering Pump, Timer, Control, and Tubing: Proprietary.
 - 7. Culture: Include 1-gal. bottle, as recommended by unit manufacturer.
 - 8. Piping: Waste and vent piping is specified in Section 22 1316 "Sanitary Waste and Vent Piping."

2.10 MOTORS

- A. General requirements for motors are specified in Section 22 0513 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, motor shall be large enough, so driven load will not require motor to operate in service factor range above 1.0.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Equipment Mounting:
 - 1. Install FOG disposal systems on cast-in-place concrete equipment base(s).
 - a. Comply with requirements for equipment bases and foundations specified in Section 03 3000 "Cast-in-Place Concrete.
 - 2. Comply with requirements for vibration-isolation and seismic-control devices specified in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
 - 3. Comply with requirements for vibration-isolation devices specified in Section 22 0548.13 "Vibration Controls for Plumbing Piping and Equipment."
- B. Install backwater valves in building drain piping.
 - 1. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.

22 1319 - 7

- C. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- D. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- E. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- F. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof. Comply with requirements in Section 07 6200 "Sheet Metal Flashing and Trim."
- G. Install through-penetration firestop assemblies in plastic conductors and stacks at floor penetrations.
 - 1. Comply with requirements in Section 07 8413 "Penetration Firestopping."
- H. Assemble open drain fittings and install with top of hub 2 inches above floor.
- I. Install deep-seal traps on floor drains and other waste outlets, if indicated.
- J. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- K. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
- L. Install sleeve and sleeve seals with each riser and stack passing through floors with waterproof membrane.
- M. Install vent caps on each vent pipe passing through roof.
- N. Install frost-resistant vent terminals on each vent pipe passing through roof. Maintain 1-inch (25mm) clearance between vent pipe and roof substrate.
- O. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.
- P. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.
- Q. Assemble components of FOG disposal systems and install on floor.
 - 1. Install trap, vent, fresh-air inlet, and flow-control fitting according to authorities having jurisdiction.

- 2. Install shelf fastened to reinforcement in wall construction and adjacent to unit, unless otherwise indicated.
- 3. Install culture bottle, culture metering pump, timer, and control on shelf. Install tubing between culture bottle, metering pump, and chamber.
- R. Install wood-blocking reinforcement for wall-mounting-type specialties.
- S. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

- A. Comply with requirements in Section 22 1316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. FOG Disposal Systems: Connect inlet and outlet to unit, connect flow-control fitting and fresh-air inlet piping to unit inlet piping, and connect vent piping between trap and media chamber. Connect electrical power.
- D. Ground equipment according to Section 26 0526 "Grounding and Bonding for Electrical Systems."
- E. Connect wiring according to Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FLASHING INSTALLATION

- A. Comply with requirements in Section 07 6200 "Sheet Metal Flashing and Trim."
- B. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required.
- C. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- D. Set flashing on floors and roofs in solid coating of bituminous cement.
- E. Secure flashing into sleeve and specialty clamping ring or device.
- F. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 07 6200 "Sheet Metal Flashing and Trim."

G. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

3.4 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. FOG disposal systems.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.
 - 1. Nameplates and signs are specified in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections, and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled FOG disposal systems and their installation, including piping and electrical connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.6 **PROTECTION**

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain FOG disposal systems. Refer to Section 01 7900 "Demonstration and Training."

END OF SECTION

SECTION 22 1413

FACILITY STORM DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.
 - 2. Specialty pipe fittings.
 - 3. Encasement for underground metal piping.
- B. Related Sections:
 - 1. Section 22 1429 "Sump Pumps" for storm drainage pumps.
 - 2. Section 33 4100 "Storm Utility Drainage Piping" for storm drainage piping outside the building.

1.3 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Storm Drainage Piping: 10-foot head of water.
 - 2. Storm Drainage, Force-Main Piping: 100 psig.
- B. Seismic Performance: Storm drainage piping and support and installation shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For controlled-flow or siphonic roof drainage system. Include calculations, plans, and details.

1.5 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For storm drainage piping, accessories, and components, from manufacturer.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1413 - 1

- 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
- 2. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastics Piping System Components and Related Materials," for plastic piping components. Include marking with "NSF-drain" for plastic drain piping and "NSF-sewer" for plastic sewer piping.

1.7 PROJECT CONDITIONS

- A. Interruption of Existing Storm-Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Owner' Representative no fewer than five days in advance of proposed interruption of storm-drainage service.
 - 2. Do not proceed with interruption of storm-drainage service without Owner Representative's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. The product descriptions listed in the section may not all be used on this project. Refer to the Piping Material Schedules on the drawings for the specific application for each product or material. Products not shown on the schedule for the specific application may not be substituted without pre-approval from the Engineer. Where there is a conflict between the drawing schedule and specifications, the drawing schedule shall take precedent.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 74, Service and Extra Heavy classes.
- B. Gaskets: ASTM C 564, rubber.
- C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. CISPI, Hubless-Piping Couplings:

22 1413 - 2

- 1. Standards: ASTM C 1277 and CISPI 310.
- 2. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- C. Heavy-Duty, Hubless-Piping Couplings:
 - 1. Standards: ASTM C 1277 and ASTM C 1540.
 - 2. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- D. Cast-Iron, Hubless-Piping Couplings:
 - 1. Standard: ASTM C 1277.
 - 2. Description: Two-piece ASTM A 48/A 48M, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 GALVANIZED-STEEL PIPE AND FITTINGS

- A. Galvanized-Steel Pipe: ASTM A 53/A 53M, Type E, Standard Weight. Include square-cutgrooved or threaded ends matching joining method.
- B. Galvanized-Cast-Iron Drainage Fittings: ASME B16.12 threaded.
- C. Steel-Pipe Pressure Fittings:
 - 1. Galvanized-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106/A 106M, Schedule 40, seamless steel pipe. Include ends matching joining method.
 - 2. Malleable-Iron Unions: ASME B16.39; Class 150; hexagonal-stock body with ball-andsocket, metal-to-metal, bronze seating surface; and female threaded ends.
 - 3. Gray-Iron, Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- D. Cast-Iron Flanges: ASME B16.1, Class 125.
 - 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8inch maximum thickness unless thickness or specific material is indicated.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- E. Grooved-Joint, Galvanized-Steel-Pipe Appurtenances:
 - 1. Galvanized, Grooved-End Fittings for Galvanized-Steel Piping: ASTM A 536 ductile-iron castings, ASTM A 47/A 47M malleable-iron castings, ASTM A 234/A 234M forged-steel fittings, or ASTM A 106/A 106M steel pipes with dimensions matching ASTM A 53/A 53M steel pipe, and complying with AWWA C606 for grooved ends.
 - 2. Grooved Mechanical Couplings for Galvanized-Steel Piping: ASTM F 1476, Type I. Include ferrous housing sections with continuous curved keys; EPDM-rubber gasket suitable for hot and cold water; and bolts and nuts.

2.5 DUCTILE-IRON PIPE AND FITTINGS

- A. Ductile-Iron, Mechanical-Joint Piping:
 - 1. Ductile-Iron Pipe: AWWA C151/A21.51, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 2. Ductile-Iron Fittings: AWWA C110/A21.10, mechanical-joint ductile- or gray-iron standard pattern or AWWA C153/A21.53, ductile-iron compact pattern.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1413 - 3

- 3. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Ductile-Iron, Push-On-Joint Piping:
 - 1. Ductile-Iron Pipe: AWWA C151/A21.51, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 2. Ductile-Iron Fittings: AWWA C110/A21.10, push-on-joint ductile- or gray-iron standard pattern or AWWA C153/A21.53, ductile-iron compact pattern.
 - 3. Gaskets: AWWA C111/A21.11, rubber.
- C. Ductile-Iron, Grooved-Joint Piping:
 - 1. Ductile-Iron Pipe: AWWA C151/A21.51 with round-cut-grooved ends according to AWWA C606.
 - 2. Ductile-Iron-Pipe Appurtenances:
 - a. Grooved-End, Ductile-Iron Fittings: ASTM A 536 ductile-iron castings with dimensions matching AWWA C110/A21.10 ductile-iron pipe or AWWA C153/A21.53 ductile-iron fittings and complying with AWWA C606 for grooved ends.
 - b. Grooved Mechanical Couplings for Ductile-Iron Pipe: ASTM F 1476, Type I. Include ferrous housing sections with continuous curved keys; EPDM-rubber center-leg gasket suitable for hot and cold water; and bolts and nuts.

2.6 COPPER TUBE AND FITTINGS

- A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.
- B. Copper Drainage Fittings: ASME B16.23, cast-copper fittings or ASME B16.29, wrought-copper, solder-joint fittings.
- C. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
- D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.
- E. Copper Pressure Fittings:
 - 1. Copper Fittings: ASME B16.18, cast-copper-alloy fittings or ASME B16.22, wroughtcopper, solder-joint fittings. Furnish wrought-copper fittings if indicated.
 - 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
- F. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 - 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8inch maximum thickness unless thickness or specific material is indicated.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- G. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.7 ABS PIPE AND FITTINGS

A. Solid-Wall ABS Pipe: ASTM D 2661, Schedule 40.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1413 - 4

- B. Cellular-Core ABS Pipe: ASTM F 628, Schedule 40.
- C. ABS Socket Fittings: ASTM D 2661, made to ASTM D 3311, drain, waste, and vent patterns.
- D. Solvent Cement: ASTM D 2235.

2.8 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
- B. Cellular-Core PVC Pipe: ASTM F 891, Schedule 40.
- C. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- D. Adhesive Primer: ASTM F 656.
- E. Solvent Cement: ASTM D 2564.

2.9 SPECIALTY PIPE FITTINGS

- A. Transition Couplings:
 - 1. General Requirements: Fitting or device for joining piping with small differences in ODs or of different materials. Include end connections same size as and compatible with pipes to be joined.
 - 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified-pipingsystem fitting.
 - 3. Unshielded, Nonpressure Transition Couplings:
 - a. Standard: ASTM C 1173.
 - b. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - c. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
 - 4. Shielded, Nonpressure Transition Couplings:
 - a. Standard: ASTM C 1460.
 - b. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - 5. Pressure Transition Couplings:
 - a. Standard: AWWA C219.
 - b. Description: Metal, sleeve-type couplings same size as, with pressure rating at least equal to and ends compatible with, pipes to be joined.
 - c. Center-Sleeve Material: To match pipe type.
 - d. Gasket Material: Natural or synthetic rubber.
 - e. Metal Component Finish: Corrosion-resistant coating or material.

22 1413 - 5

- B. Dielectric Fittings:
 - 1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
 - 2. Dielectric Unions:
 - a. Description:
 - 1) Standard: ASSE 1079.
 - 2) Pressure Rating: 150 psig at 180 deg F (82 deg C).
 - 3) End Connections: Solder-joint copper alloy and threaded ferrous.
 - 3. Dielectric Flanges:
 - a.
 - b. Description:
 - 1) Standard: ASSE 1079.
 - 2) Factory-fabricated, bolted, companion-flange assembly.
 - 3) Pressure Rating: 150 psig.
 - 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
 - 4. Dielectric-Flange Insulating Kits:
 - a. Description:
 - 1) Nonconducting materials for field assembly of companion flanges.
 - 2) Pressure Rating: 150 psig.
 - 3) Gasket: Neoprene or phenolic.
 - 4) Bolt Sleeves: Phenolic or polyethylene.
 - 5) Washers: Phenolic with steel-backing washers.
 - 5. Dielectric Nipples:
 - a. Description:
 - 1) Electroplated steel nipple complying with ASTM F 1545.
 - 2) Pressure Rating: 300 psig.
 - 3) End Connections: Male threaded or grooved.
 - 4) Lining: Inert and noncorrosive, propylene.

2.10 ENCASEMENT FOR UNDERGROUND METAL PIPING

- A. Standard: ASTM A 674 or AWWA C105.
- B. Material: High-density, crosslaminated PE film of 0.004-inch or LLDPE film of 0.008-inch minimum thickness.
- C. Form: Sheet or tube.
- D. Color: Black.

22 1413 - 6

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 31 2000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations from layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- K. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- L. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- M. Install storm drainage piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Storm Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 2 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Storm-Drainage Piping: 2 percent downward in direction of flow.

22 1413 - 7

- N. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 - 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.
- O. Install steel piping according to applicable plumbing code.
- P. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."
- Q. Install aboveground ABS piping according to ASTM D 2661.
- R. Install aboveground PVC piping according to ASTM D 2665.
- S. Install underground ABS and PVC piping according to ASTM D 2321.
- T. Install engineered controlled-flow and siphonic drain specialties and storm drainage piping in locations indicated.
- U. Install underground, ductile-iron, force-main piping according to AWWA C600. Install buried piping inside building between wall and floor penetrations and connection to storm sewer piping outside building with restrained joints. Anchor pipe to wall or floor. Install thrust-block supports at vertical and horizontal offsets.
 - 1. Install encasement on piping according to ASTM A 674 or AWWA C105.
- V. Install underground, copper, force-main tubing according to CDA's "Copper Tube Handbook."
 - 1. Install encasement on piping according to ASTM A 674 or AWWA C105.
- W. Install force mains at elevations indicated.
- X. Plumbing Specialties:
 - 1. Install backwater valves in storm drainage gravity-flow piping. Comply with requirements for backwater valves specified in Section 22 1423 "Storm Drainage Piping Specialties."
 - 2. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers in storm drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping. Comply with requirements for cleanouts specified in Section 22 1423 "Storm Drainage Piping Specialties."
 - 3. Install drains in storm drainage gravity-flow piping. Comply with requirements for drains specified in Section 22 1423 "Storm Drainage Piping Specialties."
- Y. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- Z. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- AA. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- BB. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 0518 "Escutcheons for Plumbing Piping."

22 1413 - 8

3.3 JOINT CONSTRUCTION

- A. Hub-and-Spigot, Cast-Iron Soil Piping Gasketed Joints: Join according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub-and-Spigot, Cast-Iron Soil Piping Calked Joints: Join according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead-and-oakum calked joints.
- C. Hubless, Cast-Iron Soil Piping Coupled Joints: Join according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
- D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- E. Join copper tube and fittings with soldered joints according to ASTM B 828 procedure. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.
- F. Grooved Joints: Cut groove ends of pipe according to AWWA C606. Lubricate and install gasket over ends of pipes or pipe and fittings. Install coupling housing sections, over gasket, with keys seated in piping grooves. Install and tighten housing bolts.
- G. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.
- H. Plastic, Nonpressure-Piping, Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendices.
 - 3. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendices.

3.4 SPECIALTY PIPE FITTING INSTALLATION

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in ODs.
 - 2. In Drainage Piping: Shielded, nonpressure transition couplings.
 - 3. In Aboveground Force-Main Piping: Fitting-type transition couplings.
 - 4. In Underground Force-Main Piping:
 - a. NPS 1-1/2 and Smaller: Fitting-type transition couplings.
 - b. NPS 2 and Larger: Pressure transition couplings.
- B. Dielectric Fittings:
 - 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1413 - 9

- 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
- 3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges or flange kits.
- 4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 VALVE INSTALLATION

- A. General valve installation requirements are specified in Section 22 0523.12 "Ball Valves for Plumbing Piping," Section 22 0523.14 "Check Valves for Plumbing Piping," and Section 22 0523.15 "Gate Valves for Plumbing Piping."
- B. Shutoff Valves: Install shutoff valve on each sump pump discharge.
 - 1. Install gate or full-port ball valve for piping NPS 2 and smaller.
 - 2. Install gate valve for piping NPS 2-1/2 and larger.
- C. Check Valves: Install swing-check valve, between pump and shutoff valve, on each sump pump discharge.
- D. Backwater Valves: Install backwater valves in piping subject to backflow.
 - 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type unless otherwise indicated.
 - 2. Install backwater valves in accessible locations.
 - 3. Comply with requirements for backwater valves specified in Section 22 1423 "Storm Drainage Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for seismic-restraint devices specified in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Comply with requirements for pipe hanger and support devices and installation specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
 - 3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 - 5. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 6. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 8. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.
- D. Support vertical piping and tubing at base and at each floor.

- E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 - 6. Spacing for 10-foot pipe lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- G. Install supports for vertical cast-iron soil piping every 15 feet.
- H. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 - 3. NPS 2: 10 feet with 3/8-inch rod.
 - 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 - 5. NPS 3: 12 feet with 1/2-inch rod.
 - 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 - 7. NPS 6 and NPS 8: 12 feet with 3/4-inch rod.
 - 8. NPS 10 and NPS 12: 12 feet with 7/8-inch rod.
- I. Install supports for vertical steel piping every 15 feet.
- J. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 4. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - 5. NPS 6: 10 feet with 5/8-inch rod.
 - 6. NPS 8: 10 feet with 3/4-inch rod.
- K. Install supports for vertical copper tubing every 10 feet.
- L. Install hangers for ABS and PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.
- M. Install supports for vertical ABS and PVC piping every 48 inches.
- N. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect storm drainage piping to roof drains and storm drainage specialties.
 - 1. Install test tees (wall cleanouts) in conductors near floor, and floor cleanouts with cover flush with floor.
 - 2. Install horizontal backwater valves with cleanout cover flush with floor or in pit with pit cover flush with floor.
 - 3. Comply with requirements for backwater valves, cleanouts, and drains specified in Section 22 1423 "Storm Drainage Piping Specialties."
- D. Connect force-main piping to the following:
 - 1. Storm Sewer: To exterior force main.
 - 2. Sump Pumps: To sump pump discharge.
- E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- F. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed storm drainage piping. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 1413 - 12

- 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
- 2. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- 3. Test Procedure: Test storm drainage piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts until completion of inspection, water level must not drop. Inspect joints for leaks.
- 4. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
- 5. Prepare reports for tests and required corrective action.
- E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 2. Cap and subject piping to static-water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 4. Prepare reports for tests and required corrective action.

3.10 CLEANING

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION

22 1413 - 14

SECTION 22 1423

STORM DRAINAGE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Roof drains.
 - 2. Miscellaneous storm drainage piping specialties.
 - 3. Cleanouts.
 - 4. Backwater valves.
 - 5. Trench drains.
 - 6. Channel drainage systems.
 - 7. Through-penetration firestop assemblies.
 - 8. Flashing materials.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

PART 3 - See "Writing Guide" Article in the Evaluations for a discussion of this Section's organization and the most efficient way to revise this Section.

3.1 The product descriptions listed in the section may not all be used on this project. Refer to the Equipment Schedules on the drawings for the specific application for each product or material. Products not shown on the schedule for the specific application may not be substituted without pre-approval from the Engineer. Where there is a conflict between the drawing schedules and specifications, the drawing schedules shall take precedent.

3.2 MISCELLANEOUS STORM DRAINAGE PIPING SPECIALTIES

- A. Downspout Adaptors:
 - 1. Description: Manufactured, gray-iron casting, for attaching to horizontal-outlet, parapet roof drain and to exterior, sheet metal downspout.
 - 2. Size: Inlet size to match parapet drain outlet.
- B. Downspout Boots:
 - 1. Description: Manufactured, ASTM A 48/A 48M, gray-iron casting, with strap or ears for attaching to building; NPS 4 outlet; and shop-applied bituminous coating.
 - 2. Size: Inlet size to match downspout and NPS 4 outlet.
- C. Conductor Nozzles:
 - 1. Description: Bronze body with threaded inlet and bronze wall flange with mounting holes.
 - 2. Size: Same as connected conductor.
- D. Test Tees:
 - 1. Standard: ASME A112.36.2M and ASTM A 74, ASTM A 888, or CISPI 301, for cleanout test tees.
 - 2. Size: Same as connected drainage piping.
 - 3. Body Material: Hub-and-spigot, cast-iron soil-pipe T-branch or hubless, cast-iron soil-pipe test tee as required to match connected piping.
 - 4. Closure Plug: Countersunk or raised head, brass.
 - 5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

3.3 BACKWATER VALVES

- A. Cast-Iron, Horizontal Backwater Valves:
 - 1. Standard: ASME A112.14.1, for backwater valves.
 - 2. Size: Same as connected piping.
 - 3. Body Material: Cast iron.
 - 4. Cover: Cast iron with bolted or threaded access check valve.
 - 5. End Connections: Match pipe type.
 - 6. Check Valve: Removable, bronze, swing check, factory assembled or field modified to hang open for airflow unless subject to backflow condition.

22 1423 - 2

- 7. Extension: ASTM A 74, Service class; full-size, cast-iron soil-pipe extension to fieldinstalled cleanout at floor; replaces backwater valve cover.
- B. Cast-Iron, Drain-Outlet Backwater Valves:
 - 1. Size: Same as floor drain outlet.
 - 2. Body Material: Cast iron or bronze made for vertical installation in bottom outlet of floor drain.
 - 3. Check Valve: Removable ball float.
 - 4. Inlet: Threaded.
 - 5. Outlet: Threaded or spigot.
- C. Plastic, Horizontal Backwater Valves:
 - 1. Standard: ASME A112.14.1, for backwater valves.
 - 2. Size: Same as connected piping.
 - 3. Body Material: ABS or PVC.
 - 4. Cover: Same material as body with threaded access to check valve.
 - 5. Check Valve: Removable swing check.
 - 6. End Connections: Socket type.

3.4 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

- A. Through-Penetration Firestop Assemblies:
 - 1. Standard: ASTM E 814, for through-penetration firestop assemblies.
 - 2. Certification and Listing: Intertek Testing Service NA for through-penetration firestop assemblies.
 - 3. Size: Same as connected pipe.
 - 4. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 - 5. Stack Fitting: ASTM A 48/A 48M, gray-iron, hubless-pattern, wye branch with neoprene O-ring at base and gray-iron plug in thermal-release harness. Include PVC protective cap for plug.
 - 6. Special Coating: Corrosion resistant on interior of fittings.

3.5 FLASHING MATERIALS

- A. Copper Sheet: ASTM B 152/B 152M,12 oz./sq. ft.
- B. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch minimum thickness unless otherwise indicated. Include G90 hot-dip galvanized, mill-phosphatized finish for painting if indicated.
- C. Elastic Membrane Sheet: ASTM D 4068, flexible, chlorinated polyethylene, 40-mil minimum thickness.
- D. Fasteners: Metal compatible with material and substrate being fastened.
- E. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.
- F. Solder: ASTM B 32, lead-free alloy.

22 1423 - 3

PART 4 - EXECUTION

4.1 INSTALLATION

- A. Install roof drains at low points of roof areas according to roof membrane manufacturer's written installation instructions.
 - 1. Install flashing collar or flange of roof drain to prevent leakage between drain and adjoining roofing. Maintain integrity of waterproof membranes where penetrated.
 - 2. Install expansion joints, if indicated, in roof drain outlets.
 - 3. Position roof drains for easy access and maintenance.
- B. Install downspout adapters on outlet of back-outlet parapet roof drains and connect to sheet metal downspouts.
- C. Install downspout boots at grade with top 12 inches above grade. Secure to building wall.
- D. Install conductor nozzles at exposed bottom of conductors where they spill onto grade.
- E. Install cleanouts in aboveground piping and building drain piping according to the following instructions unless otherwise indicated:
 - 1. Use cleanouts the same size as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate cleanouts at each change in direction of piping greater than 45 degrees.
 - 3. Locate cleanouts at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate cleanouts at base of each vertical soil and waste stack.
- F. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- G. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- H. Install horizontal backwater valves in floor with cover flush with floor.
- I. Install drain-outlet backwater valves in outlet of drains.
- J. Install test tees in vertical conductors and near floor.
- K. Install wall cleanouts in vertical conductors. Install access door in wall if indicated.
- L. Install trench drains at low points of surface areas to be drained. Set grates of drains flush with finished surface unless otherwise indicated.
- M. Assemble channel drainage system components according to manufacturer's written instructions. Install on support devices so that top will be flush with adjacent surface.
- N. Install through-penetration firestop assemblies in plastic conductors at concrete floor penetrations.
- O. Install sleeve flashing device with each conductor passing through floors with waterproof membrane.

22 1423 - 4

STORM DRAINAGE PIPING SPECIALTIES

4.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 1413 "Facility Storm Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

4.3 FLASHING INSTALLATION

- A. Fabricate flashing from single piece of metal unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 - 1. Lead Sheets: Burn joints of 6.0-lb/sq. ft. lead sheets, 0.0938-inch thickness or thicker. Solder joints of 4.0-lb/sq. ft. lead sheets, 0.0625-inch thickness or thinner.
 - 2. Copper Sheets: Solder joints of copper sheets.
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching the pipe size, with a minimum length of 10 inches and with skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.
- E. Fabricate and install flashing and pans, sumps, and other drainage shapes.

4.4 **PROTECTION**

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION

22 1423 - 6

SECTION 22 1429

SUMP PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Submersible sump pumps.
 - 2. Wet-pit-volute sump pumps.
 - 3. Sump-pump basins and basin covers.
 - 4. Packaged drainage-pump units.
- B. Related Section:
 - 1. Section 22 "Sanitary Sewerage Pumps" for effluent and sewage pumps.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Wiring Diagrams: For power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pumps and controls, to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Retain shipping flange protective covers and protective coatings during storage.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

- B. Protect bearings and couplings against damage.
- C. Comply with pump manufacturer's written rigging instructions for handling.

PART 2 - PRODUCTS

2.1 SUBMERSIBLE SUMP PUMPS

- A. Submersible, Fixed-Position, Single-Seal Sump Pumps:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products as specified per plan schedules or equal by one of the following:
 - a. <u>Bell & Gossett; a Xylem brand</u>.
 - b. <u>Grundfos Pumps Corp</u>.
 - c. <u>Zoeller Company</u>.
 - 2. Description: Factory-assembled and -tested sump-pump unit.
 - 3. Pump Type: Submersible, end-suction, single-stage, close-coupled, overhung-impeller, centrifugal sump pump as defined in HI 1.1-1.2 and HI 1.3.
 - 4. Pump Casing: Cast iron, with strainer inlet, legs that elevate pump to permit flow into impeller, and vertical discharge for piping connection.
 - 5. Impeller: Statically and dynamically balanced, ASTM A 48/A 48M, Class No. 25 A cast iron ASTM A 532/A 532M, abrasion-resistant cast iron and ASTM B 584, cast bronze, design for clear wastewater handling, and keyed and secured to shaft.
 - 6. Pump and Motor Shaft: Stainless steel, with factory-sealed, grease-lubricated ball bearings.
 - 7. Seal: Mechanical.
 - 8. Motor: Hermetically sealed, capacitor-start type; with built-in overload protection; lifting eye or lug; and three-conductor, waterproof power cable of length required and with grounding plug and cable-sealing assembly for connection at pump.
 - a. Motor Housing Fluid: Oil.
 - 9. Controls:
 - a. Enclosure: NEMA 250, Type 4X.
 - b. Switch Type: Pedestal-mounted float switch with float rods and rod buttons.
 - c. Automatic Alternator: Start pumps on successive cycles and start multiple pumps if one cannot handle load.
 - d. Float Guides: Pipe or other restraint for floats and rods in basins of depth greater than 60 inches.
 - e. High-Water Alarm: Cover-mounted, compression-probe alarm, with electric bell; 120-V ac, with transformer and contacts for remote alarm bell.
 - 10. Controls:
 - a. Enclosure: NEMA 250, Type 4X; pedestal-mounted.
 - b. Switch Type: Mechanical-float type, in NEMA 250, Type 6 enclosures with mounting rod and electric cables.
 - c. Automatic Alternator: Start pumps on successive cycles and start multiple pumps if one cannot handle load.

- d. High-Water Alarm: Rod-mounted, NEMA 250, Type 6 enclosure with mechanicalfloat, mercury-float, or pressure switch matching control and electric bell; 120-V ac, with transformer and contacts for remote alarm bell.
- 11. Control-Interface Features:
 - a. Remote Alarm Contacts: For remote alarm interface.
 - b. Building Automation System Interface: Auxiliary contacts in pump controls for interface to building automation system and capable of providing the following:
 - 1) On-off status of pump.
 - 2) Alarm status.

2.2 SUMP-PUMP BASINS AND BASIN COVERS

- A. Basins: Factory-fabricated, watertight, cylindrical, basin sump with top flange and sidewall openings for pipe connections.
 - 1. Material: Polyethylene.
 - 2. Reinforcement: Mounting plates for pumps, fittings, and accessories.
 - 3. Anchor Flange: Same material as or compatible with basin sump, cast in or attached to sump, in location and of size required to anchor basin in concrete slab.
- B. Basin Covers: Fabricate metal cover with openings having gaskets, seals, and bushings; for access to pumps, pump shafts, control rods, discharge piping, vent connections, and power cables.
 - 1. Reinforcement: Steel or cast iron, capable of supporting foot traffic for basins installed in foot-traffic areas.
 - 2. Cover Material: Cast iron or steel with bituminous coating.
 - 3. Cover Diameter: not less than outside diameter of basin top flange.
 - 4. Manhole Required in Cover: Yes.

2.3 PACKAGED DRAINAGE-PUMP UNITS

- A. Packaged Submersible Drainage-Pump Units:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products as specified per plan schedules or equal by one of the following:
 - a. <u>Bell & Gossett; a Xylem brand</u>.
 - b. <u>Grundfos Pumps Corp</u>.
 - c. <u>Zoeller Company</u>.
 - 2. Description: Factory-assembled and -tested, automatic-operation, basin-mounted, sumppump unit.
 - 3. Pump Type: Submersible, end-suction, single-stage, close-coupled, overhung-impeller centrifugal pump as defined in HI 1.1-1.2 and HI 1.3.
 - 4. Casing: Metal.
 - 5. Impeller: Brass.
 - 6. Pump Seal: Mechanical.
 - 7. Motor: Hermetically sealed, capacitor-start type, with built-in overload protection.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

- 8. Power Cord: Three-conductor, waterproof cable of length required but not less than 72 inches, with grounding plug and cable-sealing assembly for connection at pump.
- 9. Pump Discharge Piping: Factory or field fabricated, galvanized, ASTM A 53/A 53M, Schedule 40, steel pipe with ASME B16.4, Class 125, gray iron threaded fittings.
- 10. Control: Motor-mounted float switch.
- 11. Basin: Plastic.

2.4 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 22 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- B. Motors for submersible pumps shall be hermetically sealed.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation and filling are specified in Section 31 "Earth Moving."

3.2 EXAMINATION

A. Examine roughing-in for plumbing piping to verify actual locations of storm drainage piping connections before sump pump installation.

3.3 INSTALLATION

A. Pump Installation Standards: Comply with HI 1.4 for installation of sump pumps.

3.4 CONNECTIONS

- A. Comply with requirements for piping specified in Section 22 "Facility Storm Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.

- 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Pumps and controls will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.7 ADJUSTING

- A. Adjust pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust control set points.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain controls and pumps.

END OF SECTION

SECTION 22 1513

GENERAL-SERVICE COMPRESSED-AIR PIPING

TIPS:

To view non-printing **Editor's Notes** that provide guidance for editing, click on MasterWorks/Single-File Formatting/Toggle/Editor's Notes.

To read **detailed research**, **technical information about products and materials**, **and coordination checklists**, click on MasterWorks/Supporting Information.

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes piping and related specialties for general-service compressed-air systems operating at 200 psig (1380 kPa) or less.
- B. Related Sections include the following:
 - 1. Section 22 1519 "General-Service Packaged Air Compressors and Receivers" for general-service air compressors and accessories.

1.3 **DEFINITIONS**

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. CR: Chlorosulfonated polyethylene synthetic rubber.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. HDPE: High-density polyethylene plastic.
- E. NBR: Acrylonitrile-butadiene rubber.
- F. PE: Polyethylene plastic.
- G. PVC: Polyvinyl chloride plastic.
- H. High-Pressure Compressed-Air Piping: System of compressed-air piping and specialties operating at pressures between 150 and 200 psig (1035 and 1380 kPa).

22 1513 - 1

GENERAL-SERVICE COMPRESSED-AIR PIPING I. Low-Pressure Compressed-Air Piping: System of compressed-air piping and specialties operating at pressures of 150 psig (1035 kPa) or less.

1.4 **PERFORMANCE REQUIREMENTS**

A. Seismic Performance: Compressed-air piping and support and installation shall withstand effects of seismic events determined according to [SEI/ASCE 7, "Minimum Design Loads for Buildings and Other Structures."] <Insert applicable code requirement.>

1.5 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Plastic pipes, fittings, and valves.
 - 2. Dielectric fittings.
 - 3. Flexible pipe connectors.
 - 4. Safety valves.
 - 5. Pressure regulators. Include rated capacities and operating characteristics.
 - 6. Automatic drain valves.
 - 7. Filters. Include rated capacities and operating characteristics.
 - 8. Lubricators. Include rated capacities and operating characteristics.
 - 9. Quick couplings.
 - 10. Hose assemblies.

1.6 INFORMATIONAL SUBMITTALS

- A. [Brazing] [Brazing and welding] [Welding] certificates.
- B. Qualification Data: For Installers.
- C. Field quality-control test reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For general-service compressed-air piping specialties to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Extruded-Tee Outlet Procedure: Qualify operators according to training provided by T-DRILL Industries Inc., for making branch outlets.
 - 2. Pressure-Seal Joining Procedure for Copper Tubing: Qualify operators according to training provided by Viega; Plumbing and Heating Systems.
 - 3. Pressure-Seal Joining Procedure for Steel Piping. Qualify operators according to training provided by Victaulic Company.

22 1513 - 2

- B. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications," or to AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."
- C. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
- D. ASME Compliance:
 - 1. Comply with ASME B31.1, "Power Piping," for high-pressure compressed-air piping.
 - 2. Comply with ASME B31.9, "Building Services Piping," for low-pressure compressed-air piping.

1.9 **PROJECT CONDITIONS**

- A. Interruption of Existing Compressed-Air Service: Do not interrupt compressed-air service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary compressed-air service according to requirements indicated:
 - 1. Notify [Architect] [Construction Manager] [Owner] no fewer than [two] <Insert number> days in advance of proposed interruption of compressed-air service.
 - 2. Do not proceed with interruption of compressed-air service without [Architect's] [Construction Manager's] [Owner's] written permission.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Schedule 40, Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade B, black or hot-dip zinc coated with ends threaded according to ASME B1.20.1.
 - 1. Steel Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106, Schedule 40, galvanized seamless steel pipe. Include ends matching joining method.
 - 2. Malleable-Iron Fittings: ASME B16.3, Class 150 or 300, threaded.
 - 3. Malleable-Iron Unions: ASME B16.39, Class 150 or 300, threaded.
 - 4. Steel Flanges: ASME B16.5, Class 150 or 300, carbon steel, threaded.
 - 5. Wrought-Steel Butt-Welding Fittings: ASME B16.9, Schedule 40.
 - 6. Steel Flanges: ASME B16.5, Class 150 or 300, carbon steel.
 - 7. Grooved-End Fittings and Couplings:
 - a. <<u>Double click here to find, evaluate, and insert list of manufacturers and products.></u>
 - b. Grooved-End Fittings: ASTM A 47/A 47M, malleable-iron castings or ASTM A 536, ductile-iron casting; with grooves according to AWWA C606 and dimensions matching steel pipe.
 - c. Couplings: AWWA C606 or UL 213, for steel-pipe dimensions and rated for 300-psig (2070-kPa) minimum working pressure. Include ferrous housing sections, gasket suitable for compressed air, and bolts and nuts. Provide EDPM gaskets for oil-free compressed air. Provide NBR gaskets if compressed air contains oil or oil vapor.

- B. Schedule 5, Steel Pipe: ASTM A 135, carbon steel with plain ends and zinc-plated finish.
 - Pressure-Seal Fittings: Listed and labeled by a qualified testing agency and FMGapproved, carbon-steel, pressure-seal housing with O-ring end seals suitable for compressed-air piping and rated for 300-psig (2070-kPa) minimum working pressure. Provide EDPM seals for oil-free compressed air. Provide NBR seals if compressed air contains oil or oil vapor.
 - a. Science science science science science <a hre
- C. Copper Tube: [ASTM B 88, Type K or L (ASTM B 88M, Type A or B)] [and] [ASTM B 88, Type M (ASTM B 88M, Type C)] seamless, drawn-temper, water tube.
 - 1. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type or MSS SP-73, wrought copper with dimensions for brazed joints.
 - 2. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150 or 300.
 - 3. Copper Unions: ASME B16.22 or MSS SP-123.
 - 4. Press-Type Fittings, NPS 2 (DN 50) and Smaller: Wrought-copper fitting with EPDM Oring seal in each end.
 - a. <<u>Double click here to find, evaluate, and insert list of manufacturers and products.></u>
 - 5. Press-Type Fittings, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Bronze fitting with stainlesssteel grip ring and EPDM O-ring seal in each end.
 - a. www.example.com www.example.com www.example.com"/>www.example.com www.example.com www.example.com www.example.com www.example.com www.example.com"/>www.example.com www.example.com www.example.com wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
 - 6. Extruded-Tee Outlets: Procedure for making branch outlets in copper tube according to ASTM F 2014.
 - a. <<u>Double click here to find, evaluate, and insert list of manufacturers and products.></u>
 - 7. Grooved-End Fittings and Couplings:
 - a. <<u>Double click here to find, evaluate, and insert list of manufacturers and products.></u>
 - b. Grooved-End Fittings: ASTM B 75 (ASTM B 75M), copper tube or ASTM B 584, bronze castings.
 - c. Couplings: Copper-tube dimensions and design similar to AWWA C606. Include ferrous housing sections, gasket suitable for compressed air, and bolts and nuts. Provide EDPM gasket for oil-free compressed air. Provide NBR gasket if compressed air contains oil or oil vapor.
- D. Transition Couplings for Metal Piping: Metal coupling or other manufactured fitting same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.
- E. PVC Pipe: ASTM D 1785, Schedule 40.
 - 1. PVC Fittings: ASTM D 2466, Schedule 40, socket type.
- F. Blue ABS Piping System: Made of ASTM D 3965, ABS-resin modified to provide shatterresistant pipe for compressed-air service. Pipe and fittings are light blue and sizes are in millimeters.

22 1513 - 4 COMPRES

GENERAL-SERVICE COMPRESSED-AIR PIPING

- 1. <a>

 2.

 2.

 2.

 2.

 2.

 2.

 2.

 2.

 2.

 3.

 3.

 3.

 3.

 3.

 3.

 3.

 3.

 4.

 3.

 3.

 4.

 3.

 4.

 4.

 4.

 4.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 5.

 <
- 2. Transition Fittings, 20 to 63 mm: Composite union with ABS socket end, CR O-ring, and malleable-iron union nut and threaded end; with construction similar to MSS SP-107, transition union.
- 3. Transition Fittings, 90 to 110 mm: Flange assembly with ABS flange, CR gasket, and metal flange of material matching piping to be connected.
- 4. Valves, 20 to 63 mm: ABS union ball valve with socket ends.
- 5. Valves, 90 to 110 mm: ABS butterfly valve with lever handle.
- G. Green ABS Piping System: Made of ASTM D 3965, ABS-resin modified to provide shatterresistant pipe for compressed-air service. Pipe and fittings are dark green with SDR of 9.0 and same OD as ASTM A 53/A 53M, steel pipe.
 - 1. < Double click here to find, evaluate, and insert list of manufacturers and products.>
 - Transition Fittings, NPS 1/2 to NPS 2 (DN 15 to DN 50): Composite union with ABS socket end, CR O-ring, ABS union nut, and brass solder-joint end; with construction similar to MSS SP-107, transition union.
 - 3. Transition Fittings, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): ABS flange, CR gasket, and metal flange of material matching piping to be connected.
 - 4. Valves, NPS 1/2 to NPS 2 (DN 15 to DN 50): Union ball valve with socket ends.
 - 5. Valves, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Union ball valve with flanged ends. Include safety exhaust feature in Part 3 "Valve Applications" Article if required.
- H. HDPE Piping System: Made of ASTM D 1248, HDPE resin to provide shatter-resistant pipe for compressed-air service. Pipe and fittings are dark blue with pipe dimensions about the same OD as ASTM D 3035, PE pipe.
 - 1. < <u>Couble click here to find, evaluate, and insert list of manufacturers and products.</u>
 - 2. Transition Fittings, NPS 1/2 to NPS 2 (DN 15 to DN 50): HDPE adapter with one socket end and one end with threaded brass insert.
 - 3. Transition Fittings, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): HDPE flange, CR gasket, and metal flange of material matching piping to be connected.
 - 4. Valves, NPS 1/2 to NPS 3 (DN 15 to DN 80): HDPE union ball valve with socket ends.

2.2 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for compressed-air piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Plastic Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for generalduty brazing, unless otherwise indicated.

GENERAL-SERVICE 22 1513 - 5 COMPRESSED-AIR PIPING

- F. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- G. Solvent Cements for Joining Plastic Piping:
 - 1. ABS Piping: ASTM D 2235.
 - 2. PVC Piping: ASTM D 2564. Include primer complying with ASTM F 656.

2.3 VALVES

A. Metal Ball, Butterfly, Check, and Gate Valves: Comply with requirements in Section 22 0523.12 "Ball Valves for Plumbing Piping," Section 22 0523.13 "Butterfly Valves for Plumbing Piping," Section 22 0523.14 "Check Valves for Plumbing Piping," and Section 22 0523.15 "Gate Valves for Plumbing Piping."

2.4 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Source of the second sec
 - 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: [125 psig (860 kPa) minimum at 180 deg F (82 deg C)] [150 psig (1035 kPa)] [250 psig (1725 kPa)].
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:
 - 1. <a>

 Ouble click here to find, evaluate, and insert list of manufacturers and products.
 - 2. Description:
 - a. Standard: ASSE 1079.
 - b. Factory-fabricated, bolted, companion-flange assembly.
 - c. Pressure Rating: [125 psig (860 kPa) minimum at 180 deg F (82 deg C)] [150 psig (1035 kPa)] [175 psig (1200 kPa)] [300 psig (2070 kPa)].
 - d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solderjoint copper alloy and threaded ferrous.
- D. Dielectric-Flange Insulating Kits:
 - 1. <a>

 Couble click here to find, evaluate, and insert list of manufacturers and products.
 - 2. Description:
 - a. Nonconducting materials for field assembly of companion flanges.
 - b. Pressure Rating: [150 psig (1035 kPa)] <Insert pressure>.
 - c. Gasket: Neoprene or phenolic.
 - d. Bolt Sleeves: Phenolic or polyethylene.
 - e. Washers: Phenolic with steel backing washers.

22 1513 - 6

GENERAL-SERVICE COMPRESSED-AIR PIPING

2.5 FLEXIBLE PIPE CONNECTORS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. < Double click here to find, evaluate, and insert list of manufacturers and products.>
- C. Bronze-Hose Flexible Pipe Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 - 1. Working-Pressure Rating: [200 psig (1380 kPa)] [250 psig (1725 kPa)] minimum.
 - 2. End Connections, NPS 2 (DN 50) and Smaller: Threaded copper pipe or plain-end copper tube.
 - 3. End Connections, NPS 2-1/2 (DN 65) and Larger: Flanged copper alloy.
- D. Stainless-Steel-Hose Flexible Pipe Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 - 1. Working-Pressure Rating: [200 psig (1380 kPa)] [250 psig (1725 kPa)] minimum.
 - 2. End Connections, NPS 2 (DN 50) and Smaller: Threaded steel pipe nipple.
 - 3. End Connections, NPS 2-1/2 (DN 65) and Larger: Flanged steel nipple.

2.6 SPECIALTIES

- A. Safety Valves: ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," construction; National Board certified, labeled, and factory sealed; constructed of bronze body with poppet-type safety valve for compressed-air service.
 - 1. Pressure Settings: Higher than discharge pressure and same or lower than receiver pressure rating.
- B. Air-Main Pressure Regulators: Bronze body, direct acting, spring-loaded manual pressuresetting adjustment, and rated for [250-psig (1725-kPa)] <Insert pressure> inlet pressure, unless otherwise indicated.
 - 1. Type: Pilot operated.
- C. Air-Line Pressure Regulators: [Diaphragm] [Diaphragm or pilot] [Pilot] operated, bronze body, direct acting, spring-loaded manual pressure-setting adjustment, and rated for [200-psig (1380-kPa)] < Insert pressure> minimum inlet pressure, unless otherwise indicated.
- D. Air-Line Pressure Regulators: Diaphragm operated, aluminum alloy or plastic body, direct acting, spring-loaded manual pressure-setting adjustment, and rated for [200-psig (1380-kPa)]
 Insert pressure minimum inlet pressure, unless otherwise indicated.
- E. Automatic Drain Valves: Stainless-steel body and internal parts, rated for [200-psig (1380-kPa)] <Insert pressure> minimum working pressure, capable of automatic discharge of collected condensate.[Include mounting bracket if wall mounting is indicated.]
- F. Coalescing Filters: Coalescing type with activated carbon capable of removing water and oil aerosols; with color-change dye to indicate when carbon is saturated and warning light to indicate when selected maximum pressure drop has been exceeded.[Include mounting bracket if wall mounting is indicated.]

GENERAL-SERVICE 22 1513 - 7 COMPRESSED-AIR PIPING

- G. Mechanical Filters: Two-stage, mechanical-separation-type, air-line filters. Equip with deflector plates, resin-impregnated-ribbon-type filters with edge filtration, and drain cock.[Include mounting bracket if wall mounting is indicated.]
- H. Air-Line Lubricators: With drip chamber and sight dome for observing oil drop entering air stream; with oil-feed adjustment screw and quick-release collar for easy bowl removal.[Include mounting bracket if wall mounting is indicated.]
 - 1. Provide with automatic feed device for supplying oil to lubricator.

2.7 QUICK COUPLINGS

- A. < <u>Couble click here to find, evaluate, and insert list of manufacturers and products.></u>
- B. General Requirements for Quick Couplings: Assembly with locking-mechanism feature for quick connection and disconnection of compressed-air hose.
- C. Automatic-Shutoff Quick Couplings: Straight-through brass body with O-ring or gasket seal and stainless-steel or nickel-plated-steel operating parts.
 - 1. Socket End: With one-way valve and threaded inlet for connection to piping or threaded hose fitting.
 - 2. Plug End: [Flow-sensor-bleeder, check-valve] [Straight-through] type with barbed outlet for attaching hose.
- D. Valveless Quick Couplings: Straight-through brass body with stainless-steel or nickel-platedsteel operating parts.
 - 1. Socket End: With O-ring or gasket seal, without valve, and with barbed inlet for attaching hose.
 - 2. Plug End: With barbed outlet for attaching hose.

2.8 HOSE ASSEMBLIES

- A. Description: Compatible hose, clamps, couplings, and splicers suitable for compressed-air service, of nominal diameter indicated, and rated for [300-psig (2070-kPa)] <Insert pressure> minimum working pressure, unless otherwise indicated.
 - 1. Hose: Reinforced [single] [single- or double] [double]-wire-braid, CR-covered hose for compressed-air service.
 - 2. Hose Clamps: Stainless-steel clamps or bands.
 - 3. Hose Couplings: Two-piece, straight-through, threaded brass or stainless-steel O-ring or gasket-seal swivel coupling with barbed ends for connecting two sections of hose.
 - 4. Hose Splicers: One-piece, straight-through brass or stainless-steel fitting with barbed ends for connecting two sections of hose.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Compressed-Air Piping between Air Compressors and Receivers: Use[**one of**] the following piping materials for each size range:
 - 1. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Schedule 40, [black] [galvanized]steel pipe; threaded, malleable-iron fittings; and threaded joints.
 - 2. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Schedule 5, galvanized-steel pipe; pressure-seal fittings; and pressure-sealed joints.
 - 3. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Schedule 40, black-steel pipe; wroughtsteel fittings; and welded joints.
 - 4. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Type K or L (Type A or B), copper tube; wrought-copper fittings; and brazed joints.
 - 5. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: Schedule 40, [black] [galvanized]-steel pipe; threaded, malleable-iron fittings; and threaded joints.
 - 6. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: Schedule 40, [black] [galvanized]-steel pipe; grooved-end fittings; couplings; and grooved joints.
 - 7. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: Schedule 40, blacksteel pipe; wrought-steel fittings; and welded joints.
 - 8. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: Type K or L (Type A or B), copper tube; wrought-copper fittings; and brazed joints.
 - 9. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: Type K or L (Type A or B), copper tube; grooved-end copper fittings; couplings; and grooved joints.
 - 10. [NPS 5 (DN 125)] <Insert pipe size> and Larger: Schedule 40, [black] [galvanized]steel pipe; threaded, malleable-iron fittings; and threaded joints.
 - 11. [NPS 5 (DN 125)] <Insert pipe size> and Larger: Schedule 40, [black] [galvanized]steel pipe; grooved-end fittings; couplings; and grooved joints.
 - 12. [NPS 5 (DN 125)] <Insert pipe size> and Larger: Schedule 40, black-steel pipe; wrought-steel fittings; and welded joints.
 - [NPS 5 (DN 125)] <Insert pipe size> and Larger: Grooved-end, Type K or L (ASTM B 88M Type A or B), copper tube; grooved-end copper fittings; couplings; and grooved joints.
- B. Low-Pressure Compressed-Air Distribution Piping: Use[**one of**] the following piping materials for each size range:
 - 1. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Schedule 40, [black] [galvanized]steel pipe; threaded, malleable-iron fittings; and threaded joints.
 - 2. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Schedule 5, galvanized-steel pipe; pressure-seal fittings; and pressure-sealed joints.
 - 3. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Type K or L (Type A or B), copper tube; wrought-copper fittings; and brazed[or soldered] joints.
 - 4. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Type K or L (Type A or B), copper tube; press-type fittings; and pressure-sealed joints.
 - 5. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: 63-mm and smaller, blue ABS pipe and fittings; transition fittings; valves; and solvent-cemented joints.
 - 6. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Green ABS pipe and fittings, transition fittings, and valves; and solvent-cemented joints.
 - 7. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: HDPE pipe, fittings, and valves; and heat-fusion joints.
 - 8. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: Schedule 40, [black] [galvanized]-steel pipe; threaded, malleable-iron fittings; and threaded joints.

- 9. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: Schedule 40, [black] [galvanized]-steel pipe; grooved-end fittings; couplings; and grooved joints.
- 10. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: Type K or L (Type A or B), copper tube; wrought-copper fittings; and brazed[or soldered] joints.
- 11. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: Type K or L (Type A or B), copper tube; grooved-end copper fittings; couplings; and grooved joints.
- 12. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: Type K or L (Type A or B), copper tube; press-type fittings; and pressure-sealed joints.
- [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: 90- and 110-mm, blue ABS pipe and fittings; transition fittings; and solvent-cemented joints. Include butterfly valves and flanged joints.
- 14. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: NPS 3 and NPS 4 (DN 80 and DN 100), green ABS pipe and fittings; transition fittings; and solvent-cemented joints. Include ball valves and flanged joints.
- 15. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: NPS 3 and NPS 4 (DN 80 and DN 100), HDPE pipe and fittings; valves; and heat-fusion joints.
- 16. [NPS 5 and NPS 6 (DN 125 and DN 150)] <Insert pipe size range>: Schedule 40, [black] [galvanized]-steel pipe; threaded, malleable-iron fittings; and threaded joints.
- 17. [NPS 5 (DN 125)] <Insert pipe size> and Larger: Schedule 40, [black] [galvanized]steel pipe; grooved-end fittings; couplings; and grooved joints.
- 18. [NPS 5 to NPS 8 (DN 125 to DN 200)] <Insert pipe size range>: Type K or L (Type A or B), copper tube; grooved-end copper fittings; couplings; and grooved joints.
- C. High-Pressure Compressed-Air Distribution Piping: Use[**one of**] the following piping materials for each size range:
 - 1. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Schedule 40, [black] [galvanized]steel pipe; threaded, malleable-iron fittings; and threaded joints.
 - 2. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Schedule 5, galvanized-steel pipe; pressure-seal fittings; and pressure-sealed joints.
 - 3. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Schedule 40, black-steel pipe; wroughtsteel fittings; and welded joints.
 - 4. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Type K or L (Type A or B), copper tube; wrought-copper fittings; and brazed[or soldered] joints.
 - 5. [NPS 2-1/2 to NPS 6 (DN 65 to DN 150)] <Insert pipe size range>: Schedule 40, [black] [galvanized]-steel pipe; threaded, malleable-iron fittings; and threaded joints.
 - 6. [NPS 2-1/2 to NPS 6 (DN 65 to DN 150)] <Insert pipe size range>: Schedule 40, [black] [galvanized]-steel pipe; grooved-end fittings; couplings; and grooved joints.
 - 7. [NPS 2-1/2 to NPS 6 (DN 65 to DN 150)] <Insert pipe size range>: Schedule 40, blacksteel pipe; wrought-steel fittings; and welded joints.
 - 8. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: Type K or L (Type A or B), copper tube; wrought-copper fittings; and brazed[or soldered] joints.
 - 9. [NPS 2-1/2 to NPS 6 (DN 65 to DN 150)] <Insert pipe size range>: Type K or L (Type A or B), copper tube; wrought-copper fittings; and brazed joints.
 - 10. [NPS 2-1/2 to NPS 6 (DN 65 to DN 150)] <Insert pipe size range>: Type K or L (Type A or B), copper tube; grooved-end copper fittings; couplings; and grooved joints.
 - 11. [NPS 8 (DN 200)] <Insert pipe size> and Larger: Schedule 40, [black] [galvanized]steel pipe; grooved-end fittings; couplings; and grooved joints.
 - 12. [NPS 8 (DN 200)] <Insert pipe size> and Larger: Schedule 40, black-steel pipe; wrought-steel fittings; and welded joints.
 - 13. [NPS 8 (DN 200)] <Insert pipe size>: Type K or L (Type A or B), copper tube; groovedend copper fittings; couplings; and grooved joints.
- D. Drain Piping: Use[**one of**] the following piping materials:

22 1513 - 10

- 1. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Type M (Type C) copper tube; wrought-copper fittings; and brazed or soldered joints.
- 2. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: PVC pipe and fittings; and solvent-cemented joints.

3.2 VALVE APPLICATIONS

- A. Metal General-Duty Valves: Comply with requirements and use valve types specified in "Valve Applications" Articles in Section 22 0523.12 "Ball Valves for Plumbing Piping," Section 22 0523.13 "Butterfly Valves for Plumbing Piping," Section 22 0523.14 "Check Valves for Plumbing Piping," and Section 22 0523.15 "Gate Valves for Plumbing Piping,"according to the following:
 - 1. Low-Pressure Compressed Air: Valve types specified for low-pressure compressed air.
 - 2. High-Pressure Compressed Air: Valve types specified for medium-pressure compressed air.
 - 3. Equipment Isolation NPS 2 (DN 50) and Smaller: Safety-exhaust, copper-alloy ball valve with exhaust vent and pressure rating at least as great as piping system operating pressure.
 - 4. Grooved-end valves may be used with grooved-end piping and grooved joints.
- B. Plastic General-Duty Valves: Provide valves, made by piping manufacturer, that are compatible with piping. Do not use plastic valves between air compressors and receivers.
 - 1. Blue ABS Piping System: Ball and butterfly valves.
 - 2. Green ABS Piping System: Ball valves.
 - 3. HDPE Piping System: Ball valves.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of compressed-air piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping concealed from view and protected from physical contact by building occupants, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited, unless otherwise indicated.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and to coordinate with other services occupying that space.
- E. Install piping adjacent to equipment and machines to allow service and maintenance.
- F. Install air and drain piping with 1 percent slope downward in direction of flow.
- G. Install nipples, flanges, unions, transition and special fittings, and valves with pressure ratings same as or higher than system pressure rating, unless otherwise indicated.
- H. Equipment and Specialty Flanged Connections:

22 1513 - 11

GENERAL-SERVICE COMPRESSED-AIR PIPING

- 1. Use steel companion flange with gasket for connection to steel pipe.
- 2. Use cast-copper-alloy companion flange with gasket and brazed[**or soldered**] joint for connection to copper tube. Do not use soldered joints for connection to air compressors or to equipment or machines producing shock or vibration.
- I. Flanged joints may be used instead of specified joint for any piping or tubing system.
- J. Extended-tee outlets with brazed branch connection may be used for copper tubing, within extruded-tee connection diameter to run tube diameter ratio for tube type, according to Extruded Tee Connections Sizes and Wall Thickness for Copper Tube (Inches) Table in ASTM F 2014.
- K. Install eccentric reducers where compressed-air piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.
- L. Install branch connections to compressed-air mains from top of main. Provide drain leg and drain trap at end of each main and branch and at low points.
- M. Install thermometer and pressure gage on discharge piping from each air compressor and on each receiver. Comply with requirements in Section 22 0519 "Meters and Gages for Plumbing Piping."
- N. Install piping to permit valve servicing.
- O. Install piping free of sags and bends.
- P. Install fittings for changes in direction and branch connections.
- Q. Install seismic restraints on piping. Seismic-restraint devices are specified in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 0518 "Escutcheons for Plumbing Piping."

3.4 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.

22 1513 - 12 COMP

GENERAL-SERVICE COMPRESSED-AIR PIPING

- Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or 2. damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints for Steel Piping: Join according to AWS D10.12/D10.12M.
- Ε. Brazed Joints for Copper Tubing: Join according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- F. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Join according to ASTM B 828 or CDA's "Copper Tube Handbook."
- G. Extruded-Tee Outlets for Copper Tubing: Form branches according to ASTM F 2014, with tools recommended by procedure manufacturer, and using operators gualified according to Part 1 "Quality Assurance" Article.
- Η. Flanged Joints: Use asbestos-free, nonmetallic gasket suitable for compressed air. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.
- Ι. Grooved Joints: Assemble couplings with housing, gasket, lubricant, and bolts. Join according to AWWA C606 for grooved joints. Do not apply lubricant to prelubricated gaskets.
- Heat-Fusion Joints for PE Piping: Clean and dry joining surfaces by wiping with clean cloth or J. paper towels. Join according to ASTM D 2657 for socket-fusion joints.
- Pressure-Sealed Joints: Join with tools recommended by fitting manufacturer, using operators K. qualified according to Part 1 "Quality Assurance" Article.
- L. Solvent-Cemented Joints for ABS Piping: Clean and dry joining surfaces. Join according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. Join according to ASME B31.9 for solvent-cemented joints and to ASTM D 2235 Appendix.
- Μ. Solvent-Cemented Joints for PVC Piping: Clean and dry joining surfaces. Join according to the followina:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. Apply primer and join according to ASME B31.9 for solvent-cemented joints and to ASTM D 2672.
- N. Dissimilar Metal Piping Material Joints: Use dielectric fittings.

3.5 VALVE INSTALLATION

- Α. General-Duty Valves: Comply with requirements in Section 22 0523.12 "Ball Valves for Plumbing Piping," Section 22 0523.13 "Butterfly Valves for Plumbing Piping," Section 22 0523.14 "Check Valves for Plumbing Piping," and Section 22 0523.15 "Gate Valves for Plumbing Piping."
- В. Install shutoff valves and unions or flanged joints at compressed-air piping to air compressors.

22 1513 - 13

- C. Install shutoff valve at inlet to each automatic drain valve, filter, lubricator, and pressure regulator.
- D. Install check valves to maintain correct direction of compressed-air flow to and from compressed-air piping specialties and equipment.

3.6 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. [NPS 2 (DN 50)] <Insert pipe size> and Smaller: Use dielectric unions.
- C. [NPS 2-1/2 to NPS 4 (DN 65 to DN 100)] <Insert pipe size range>: Use dielectric flanges.
- D. [NPS 5 (DN 125)] <Insert pipe size>and Larger: Use dielectric flange kits.

3.7 FLEXIBLE PIPE CONNECTOR INSTALLATION

- A. Install flexible pipe connectors in discharge piping[and in inlet air piping from remote airinlet filter] of each air compressor.
- B. Install bronze-hose flexible pipe connectors in copper compressed-air tubing.
- C. Install stainless-steel-hose flexible pipe connectors in steel compressed-air piping.

3.8 SPECIALTY INSTALLATION

- A. Install safety valves on receivers in quantity and size to relieve at least the capacity of connected air compressors.
- B. Install air-main pressure regulators in compressed-air piping at or near air compressors.
- C. Install air-line pressure regulators in branch piping to equipment[and tools].
- D. Install automatic drain valves on aftercoolers, receivers, and dryers. Discharge condensate onto nearest floor drain.
- E. Install coalescing filters in compressed-air piping at or near air compressors and upstream from mechanical filters.[**Mount on wall at locations indicated.**]
- F. Install mechanical filters in compressed-air piping at or near air compressors and downstream from coalescing filters.[**Mount on wall at locations indicated.**]
- G. Install air-line lubricators in branch piping to machine tools.[Mount on wall at locations indicated.]
- H. Install quick couplings at piping terminals for hose connections.
- I. Install hose assemblies at hose connections.

22 1513 - 14

3.9 CONNECTIONS

- A. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment and machine.
- B. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment and machine.

3.10 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- B. Comply with requirements in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.
- C. Vertical Piping: MSS Type 8 or 42, clamps.
- D. Individual, Straight, Horizontal Piping Runs:
 - 1. 100 Feet (30 m) or Less: MSS Type 1, adjustable, steel clevis hangers.
 - 2. Longer Than 100 Feet (30 m): MSS Type 43, adjustable roller hangers.
- E. Multiple, Straight, Horizontal Piping Runs 100 Feet (30 m) or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- F. Base of Vertical Piping: MSS Type 52, spring hangers.
- G. Support horizontal piping within [12 inches (300 mm)] <Insert dimension> of each fitting and coupling.
- H. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch (10-mm) minimum rods.
- I. Install hangers for Schedule 40, steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4 to NPS 1/2 (DN 8 to DN 15): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 3/4 to NPS 1-1/4 (DN 20 to DN 32): 84 inches (2100 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 1-1/2 (DN 40): 12 feet (3.7 m) with 3/8-inch (10-mm) rod.
 - 4. NPS 2 (DN 50): 13 feet (4 m) with 3/8-inch (10-mm) rod.
 - 5. NPS 2-1/2 (DN 65): 14 feet (4.3 m) with 1/2-inch (13-mm) rod.
 - 6. NPS 3 (DN 80): 15 feet (4.6 m) with 1/2-inch (13-mm) rod.
 - 7. NPS 3-1/2 (DN 90): 16 feet (4.9 m) with 1/2-inch (13-mm) rod.
 - 8. NPS 4 (DN 100): 17 feet (5.2 m) with 5/8-inch (16-mm) rod.
 - 9. NPS 5 (DN 125): 19 feet (5.8 m) with 5/8-inch (16-mm) rod.
 - 10. NPS 6 (DN 150): 21 feet (6.4 m) with 3/4-inch (19-mm) rod.
 - 11. NPS 8 (DN 200): 24 feet (7.3 m) with 3/4-inch (19-mm) rod.
 - 12. NPS 10 (DN 250): 26 feet (7.9 m) with 7/8-inch (22-mm) rod.
 - 13. NPS 12 (DN 300): 30 feet (9.1 m) with 7/8-inch (22-mm) rod.
- J. Install supports for vertical, Schedule 40, steel piping every 15 feet (4.6 m).

22 1513 - 15

GENERAL-SERVICE COMPRESSED-AIR PIPING

- K. Install hangers for Schedule 5, steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/2 (DN 15): 72 inches (1800 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 3/4 (DN 20): 84 inches (2100 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 1 (DN 25): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
 - 4. NPS 1-1/4 (DN 32): 108 inches (2700 mm) with 3/8-inch (10-mm) rod.
 - 5. NPS 1-1/2 (DN 40): 10 feet (3 m) with 3/8-inch (10-mm) rod.
 - 6. NPS 2 (DN 50): 11 feet (3.4 m) with 3/8-inch (10-mm) rod.
- L. Install supports for vertical, Schedule 5, steel piping every 10 feet (3 m).
- M. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4 (DN 8): 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 3/8 and NPS 1/2 (DN 10 and DN 15): 72 inches (1800 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 3/4 (DN 20): 84 inches (2100 mm) with 3/8-inch (10-mm) rod.
 - 4. NPS 1 (DN 25): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
 - 5. NPS 1-1/4 (DN 32): 108 inches (2700 mm) with 3/8-inch (10-mm) rod.
 - 6. NPS 1-1/2 (DN 40): 10 feet (3 m) with 3/8-inch (10-mm) rod.
 - 7. NPS 2 (DN 50): 11 feet (3.4 m) with 3/8-inch (10-mm) rod.
 - 8. NPS 2-1/2 (DN 65): 13 feet (4 m) with 1/2-inch (13-mm) rod.
 - 9. NPS 3 (DN 80): 14 feet (4.3 m) with 1/2-inch (13-mm) rod.
 - 10. NPS 3-1/2 (DN 90): 15 feet (4.6 m) with 1/2-inch (13-mm) rod.
 - 11. NPS 4 (DN 100): 16 feet (4.9 m) with 1/2-inch (13-mm) rod.
 - 12. NPS 5 (DN 125): 18 feet (5.5 m) with 1/2-inch (13-mm) rod.
 - 13. NPS 6 (DN 150): 20 feet (6 m) with 5/8-inch (16-mm) rod.
 - 14. NPS 8 (DN 200): 23 feet (7 m) with 3/4-inch (19-mm) rod.
- N. Install supports for vertical copper tubing every 10 feet (3 m).
- O. Install vinyl-coated hangers for ABS piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. All Sizes: Install continuous support for piping with compressed air at normal operating temperature above [100 deg F (38 deg C)] <Insert temperature>.
 - 2. NPS 3/8 and NPS 1/2 (DN 10 and DN 15): 30 inches (760 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 3/4 (DN 20): 38 inches (975 mm) with 3/8-inch (10-mm) rod.
 - 4. NPS 1 (DN 25): 40 inches (1015 mm) with 3/8-inch (10-mm) rod.
 - 5. NPS 1-1/4 (DN 32): 45 inches (1140 mm) with 3/8-inch (10-mm) rod.
 - 6. NPS 1-1/2 (DN 40): 52 inches (1330 mm) with 3/8-inch (10-mm) rod.
 - 7. NPS 2 (DN 50): 58 inches (1470 mm) with 3/8-inch (10-mm) rod.
 - 8. NPS 3 (DN 80): 68 inches (1730 mm) with 1/2-inch (13-mm) rod.
 - 9. NPS 4 (DN 100): 76 inches (1900 mm) with 1/2-inch (13-mm) rod.
- P. Install supports for vertical ABS piping every 48 inches (1220 mm).
- Q. Install vinyl-coated hangers for HDPE piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. All Sizes: Install continuous support for piping with compressed air at normal operating temperature above [100 deg F (38 deg C)] <Insert temperature>.

GENERAL-SERVICE 22 1513 - 16 COMPRESSED-AIR PIPING

- 2. NPS 1/2 (DN 15): 30 inches (760 mm) with 3/8-inch (10-mm) rod.
- 3. NPS 3/4 (DN 20): 35 inches (890 mm) with 3/8-inch (10-mm) rod.
- 4. NPS 1 (DN 25): 40 inches (1015 mm) with 3/8-inch (10-mm) rod.
- 5. NPS 1-1/4 (DN 32): 43 inches (1090 mm) with 3/8-inch (10-mm) rod.
- 6. NPS 1-1/2 (DN 40): 49 inches (1245 mm) with 3/8-inch (10-mm) rod.
- 7. NPS 2 (DN 50): 55 inches (1400 mm) with 3/8-inch (10-mm) rod.
- 8. NPS 3 and NPS 4 (DN 80 and DN 100): 96 inches (2440 mm) with 1/2-inch (13-mm) rod.
- R. Install supports for vertical HDPE piping every 48 inches (1220 mm).

3.11 LABELING AND IDENTIFICATION

A. Install identifying labels and devices for general-service compressed-air piping, valves, and specialties. Comply with requirements in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.12 FIELD QUALITY CONTROL

- A. Perform field tests and inspections.
- B. Tests and Inspections:
 - Piping Leak Tests for Metal Compressed-Air Piping: Test new and modified parts of existing piping. Cap and fill general-service compressed-air piping with oil-free dry air or gaseous nitrogen to pressure of 50 psig (345 kPa) above system operating pressure, but not less than [150 psig (1035 kPa)] <Insert pressure>. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
 - 2. Piping Leak Tests for ABS Compressed-Air Piping: Test new and modified parts of existing piping. Cap and fill general-service compressed-air piping with oil-free dry air or gaseous nitrogen, at temperature of 110 deg F (43 deg C) or less, to pressure of [40 psig (275 kPa)] <Insert pressure> above system operating pressure, but not less than [80 psig (550 kPa)] [100 psig (690 kPa)] <Insert pressure> or more than 120 psig (825 kPa). Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
 - 3. Piping Leak Tests for HDPE Compressed-Air Piping: Test new and modified parts of existing piping. Cap and fill general-service compressed-air piping with oil-free dry air or gaseous nitrogen, at temperature of 100 deg F (38 deg C) or less, to pressure of [40 psig (275 kPa)] <Insert pressure> above system operating pressure, but not less than [100 psig (690 kPa)] [125 psig (860 kPa)] [150 psig (1035 kPa)] <Insert pressure> or more than 180 psig (1240 kPa). Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
 - 4. Repair leaks and retest until no leaks exist.
 - 5. Inspect [filters] [lubricators] [and] [pressure regulators] for proper operation.
- C. Prepare test reports.

END OF SECTION

22 1513 - 18

GENERAL-SERVICE COMPRESSED-AIR PIPING

SECTION 22 2311

FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipes, tubes, and fittings.
 - 2. Piping specialties.
 - 3. Piping and tubing joining materials.
 - 4. Valves.
 - 5. Pressure regulators.

1.2 **PERFORMANCE REQUIREMENTS**

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 - 2. Service Regulators: 65 psig minimum unless otherwise indicated.
- B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig, and is reduced to secondary pressure of 0.5 psig or less.
- C. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

1.4 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

23 1123 - 1

1.6 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 - 4. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 - a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.
- B. PE Pipe: ASTM D 2513, SDR 11.
 - 1. PE Fittings: ASTM D 2683, socket-fusion type or ASTM D 3261, butt-fusion type with dimensions matching PE pipe.
 - 2. PE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D 2513, SDR 11; and steel pipe complying with ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 3. Anodeless Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet.
 - b. Casing: Steel pipe complying with ASTM A 53/A 53M, Schedule 40, black steel, Type E or S, Grade B, with corrosion-protective coating covering. Vent casing aboveground.
 - c. Aboveground Portion: PE transition fitting.
 - d. Outlet shall be threaded or suitable for welded connection.
 - e. Tracer wire connection.
 - f. Ultraviolet shield.
 - g. Stake supports with factory finish to match steel pipe casing or carrier pipe.
 - 4. Transition Service-Line Risers: Factory fabricated and leak tested.
 - a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet connected to steel pipe complying with ASTM A 53/A 53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.
 - b. Outlet shall be threaded or suitable for welded connection.
 - c. Bridging sleeve over mechanical coupling.
 - d. Factory-connected anode.

23 1123 - 2

- e. Tracer wire connection.
- f. Ultraviolet shield.
- g. Stake supports with factory finish to match steel pipe casing or carrier pipe.

2.2 PIPING SPECIALTIES

- A. Appliance Flexible Connectors:
 - 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
 - 2. Indoor, Movable-Appliance Flexible Connectors: Comply with ANSI Z21.69.
 - 3. Outdoor, Appliance Flexible Connectors: Comply with ANSI Z21.75.
 - 4. Corrugated stainless-steel tubing with polymer coating.
 - 5. Operating-Pressure Rating: 0.5 psig.
 - 6. End Fittings: Zinc-coated steel.
 - 7. Threaded Ends: Comply with ASME B1.20.1.
 - 8. Maximum Length: 72 inches
- B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 - 1. Copper-alloy convenience outlet and matching plug connector.
 - 2. Nitrile seals.
 - 3. Hand operated with automatic shutoff when disconnected.
 - 4. For indoor or outdoor applications.
 - 5. Adjustable, retractable restraining cable.
- C. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 and smaller.
 - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig.
- D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

- A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 1123 - 3

- 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
- 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
- 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
- C. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. Conbraco Industries, Inc.; Apollo Div.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Perfection Corporation; a subsidiary of American Meter Company.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated brass.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Separate packnut with adjustable-stem packing threaded ends.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. <u>Conbraco Industries, Inc.; Apollo Div</u>.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. <u>Perfection Corporation; a subsidiary of American Meter Company</u>.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 1123 - 4

- E. Bronze Plug Valves: MSS SP-78.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Lee Brass Company.
 - b. McDonald, A. Y. Mfg. Co.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Plug: Bronze.
 - 4. Ends: Threaded, socket, as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Operator: Square head or lug type with tamperproof feature where indicated.
 - 6. Pressure Class: 125 psig.
 - 7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. PE Ball Valves: Comply with ASME B16.40.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Kerotest Manufacturing Corp</u>.
 - b. Lyall, R. W. & Company, Inc.
 - c. Perfection Corporation; a subsidiary of American Meter Company.
 - 2. Body: PE.
 - 3. Ball: PE.
 - 4. Stem: Acetal.
 - 5. Seats and Seals: Nitrile.
 - 6. Ends: Plain or fusible to match piping.
 - 7. CWP Rating: 80 psig.
 - 8. Operating Temperature: Minus 20 to plus 140 deg F.
 - 9. Operator: Nut or flat head for key operation.
 - 10. Include plastic valve extension.
 - 11. Include tamperproof locking feature for valves where indicated on Drawings.
- G. Valve Boxes:
 - 1. Cast-iron, two-section box.
 - 2. Top section with cover with "GAS" lettering.
 - 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
 - 4. Adjustable cast-iron extensions of length required for depth of bury.
 - 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.5 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 1123 - 5

- 4. End Connections: Threaded for regulators NPS 2 and smaller.
- B. Line Pressure Regulators: Comply with ANSI Z21.80.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Actaris</u>.
 - b. <u>American Meter Company</u>.
 - c. Eclipse Combustion, Inc.
 - d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 - e. <u>Invensys</u>.
 - f. <u>Maxitrol Company</u>.
 - g. Richards Industries; Jordan Valve Div.
 - 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 - 6. Orifice: Aluminum; interchangeable.
 - 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
 - 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
 - 10. Overpressure Protection Device: Factory mounted on pressure regulator.
 - 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
- C. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Canadian Meter Company Inc</u>.
 - b. Eaton Corporation; Controls Div.
 - c. <u>Harper Wyman Co</u>.
 - d. <u>Maxitrol Company</u>.
 - e. <u>SCP, Inc</u>.
 - 2. Body and Diaphragm Case: Die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber.
 - 6. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 7. Factory-Applied Finish: Minimum three-layer polyester and polyurethane paint finish.
 - 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.6 DIELECTRIC UNIONS

A. Dielectric Unions:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 1123 - 6

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Capitol Manufacturing Company</u>.
 - b. Central Plastics Company.
 - c. Hart Industries International, Inc.
 - d. Jomar International Ltd.
 - e. <u>Matco-Norca, Inc</u>.
 - f. McDonald, A. Y. Mfg. Co.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - h. Wilkins; a Zurn company.
- 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig minimum at 180 deg F.
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.7 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 OUTDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Section 31 2000 "Earth Moving" for excavating, trenching, and backfilling.
 - 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.
- C. Install underground, PE, natural-gas piping according to ASTM D 2774.
- D. Steel Piping with Protective Coating:
 - 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 - 3. Replace pipe having damaged PE coating with new pipe.
- E. Install fittings for changes in direction and branch connections.
- F. Install pressure gage downstream from each service regulator. Pressure gages are specified in Section 23 0519 "Meters and Gages for HVAC Piping."

23 1123 - 7

3.2 INDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.
- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Verify final equipment locations for roughing-in.
- L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- P. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- Q. Connect branch piping from top or side of horizontal piping.

23 1123 - 8

- R. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment.
- S. Do not use natural-gas piping as grounding electrode.
- T. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- U. Install pressure gage downstream from each line regulator. Pressure gages are specified in Section 22 0519 "Meters and Gages for Plumbing Piping."
- V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- X. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.3 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing or copper connector.
- B. Install underground valves with valve boxes.
- C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.
- D. Install earthquake valves aboveground outside buildings according to listing.
- E. Install anode for metallic valves in underground PE piping.

3.4 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 - 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 - 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints:
 - 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.

23 1123 - 9

- 2. Bevel plain ends of steel pipe.
- 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- F. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.
- G. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hangers and supports specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."
- B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
- C. Install hangers for horizontal, corrugated stainless-steel tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1/2: Maximum span, 72 inches; minimum rod size, 3/8 inch.
 - 3. NPS 3/4 and Larger: Maximum span, 96 inches; minimum rod size, 3/8 inch.

3.6 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- C. Install piping adjacent to appliances to allow service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.7 LABELING AND IDENTIFYING

A. Comply with requirements in Section 22 0553 "Identification for Plumbing Piping and Equipment" for piping and valve identification.

23 1123 - 10

B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.8 FIELD QUALITY CONTROL

- A. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.
- B. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.9 PAINTING

- A. Comply with requirements in Section 09 9113 "Exterior Painting" and Section 09 9123 "Interior Painting" for painting interior and exterior natural-gas piping.
- B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MPI EXT 5.1D.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Exterior alkyd enamel matching topcoat.
 - c. Topcoat: Exterior alkyd enamel (flat).
 - d. Color: Gray.
- C. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.10 OUTDOOR PIPING SCHEDULE

- A. Underground natural-gas piping shall be one of the following:
 - 1. See piping schedule on drawings.
 - 2. PE pipe and fittings joined by heat fusion; service-line risers with tracer wire terminated in an accessible location.
 - 3. Coat pipe and fittings with protective coating for steel piping.
- B. Aboveground natural-gas piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
- C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.11 INDOOR PIPING SCHEDULE

A. See piping schedule on drawings.

3.12 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.
- B. Underground: PE valves.

3.13 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- B. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- C. Valves in branch piping for single appliance shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.

END OF SECTION

SECTION 22 3400

FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Commercial, atmospheric, gas-fired, storage, domestic-water heaters.
 - 2. Commercial, power-burner, gas-fired, storage, domestic-water heaters.
 - 3. Commercial, power-vent, gas-fired, storage, domestic-water heaters.
 - 4. Commercial, gas-fired, high-efficiency, storage, domestic-water heaters.
 - 5. Commercial, coil-type, finned-tube, gas-fired, domestic-water heaters.
 - 6. Commercial, grid-type, finned-tube, gas-fired, domestic-water heaters.
 - 7. Gas-fired, tankless, domestic-water heaters.
 - 8. Residential, atmospheric, gas-fired, storage, domestic-water heaters.
 - 9. Residential, direct-vent, gas-fired, storage, domestic-water heaters.
 - 10. Residential, power-vent, gas-fired, storage, domestic-water heaters.
 - 11. Commercial, oil-fired, storage, domestic-water heaters.
 - 12. Commercial, large-volume, oil-fired, domestic-water heaters.
 - 13. Residential, oil-fired, storage, domestic-water heaters.
 - 14. Commercial, gas- and oil-fired, domestic-water heaters.
 - 15. Domestic-water heater accessories.

1.3 **PERFORMANCE REQUIREMENTS**

- A. Seismic Performance: Commercial domestic-water heaters shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.4 ACTION SUBMITTALS

- A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Sustainable Design Submittals:
- C. Shop Drawings:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 3400 - 1

1. Wiring Diagrams: For power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For fuel-fired, domestic-water heaters, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Product Certificates: For each type of equipment domestic-water heater, from manufacturer.
- C. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
- D. Source quality-control reports.
- E. Field quality-control reports.
- F. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuel-fired, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE/IESNA Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.
- C. ASME Compliance:
 - 1. Where ASME-code construction is indicated, fabricate and label commercial, domesticwater heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - 2. Where ASME-code construction is indicated, fabricate and label commercial, finned-tube, domestic-water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.
- D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 Annex G, "Drinking Water System Components Health Effects."

22 3400 - 2

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including storage tank and supports.
 - b. Faulty operation of controls.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 - 2. Warranty Periods: From date of Substantial Completion.
 - a. Commercial, Gas-Fired, Storage, Domestic-Water Heaters:
 - 1) Storage Tank: Five years.
 - 2) Controls and Other Components: Two year(s).
 - b. Commercial, Finned-Tube, Gas-Fired, Domestic-Water Heaters:
 - 1) Heat Exchanger: Five years.
 - 2) Controls and Other Components: Two year(s).
 - 3) Separate Hot-Water Storage Tanks: Five years.
 - c. Gas-Fired, Tankless, Domestic-Water Heaters:
 - 1) Heat Exchanger: Five years.
 - 2) Controls and Other Components: Three years.
 - d. Residential, Gas-Fired, Storage, Domestic-Water Heaters:
 - 1) Storage Tank: Five years.
 - 2) Controls and Other Components: One years.
 - e. Commercial, Oil-Fired, Domestic-Water Heaters:
 - 1) Storage Tank: Five years.
 - 2) Burner: Two year(s).
 - 3) Controls and Other Components: Two Three year(s).
 - f. Residential, Oil-Fired, Storage, Domestic-Water Heaters:
 - 1) Storage Tank: Five years.
 - 2) Burner: One year(s).
 - 3) Controls and Other Components: One years.
 - g. Commercial, Gas- and Oil-Fired, Domestic-Water Heaters:
 - 1) Storage Tank: Five years.

22 3400 - 3

- 2) Burner: Two year(s).
- 3) Controls and Other Components: Two years.
- h. Compression Tanks: Five years.

PART 2 - PRODUCTS

2.1 The equipment descriptions listed in the section may not all be used on this project. Refer to the Equipment Schedules on the drawings for the specific application for each product or material. Products not shown on the schedule for the specific application may not be substituted without pre-approval from the Engineer. Where there is a conflict between the drawing schedules and specifications, the drawing schedules shall take precedent.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

- A. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.
- B. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1 or ASHRAE 90.2.
- C. Heat-Trap Fittings: ASHRAE 90.2.
- D. Manifold Kits: Domestic-water heater manufacturer's factory-fabricated inlet and outlet piping for field installation, for multiple domestic-water heater installation. Include ball-, butterfly-, or gate-type shutoff valves to isolate each domestic-water heater and calibrated balancing valves to provide balanced flow through each domestic-water heater.
- E. Gas Shutoff Valves: ANSI Z21.15/CSA 9.1-M, manually operated. Furnish for installation in piping.
- F. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include pressure rating as required to match gas supply.
- G. Automatic Gas Valves: ANSI Z21.21/CSA 6.5, appliance, electrically operated, on-off automatic valve.
- H. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.
 - 1. Gas-Fired, Domestic-Water Heaters: ANSI Z21.22/CSA 4.4-M.
 - 2. Oil-Fired, Domestic-Water Heaters: ASME rated and stamped.
- I. Pressure Relief Valves: Include pressure setting less than domestic-water heater workingpressure rating.
 - 1. Gas-Fired, Domestic-Water Heaters: ANSI Z21.22/CSA 4.4-M.
 - 2. Oil-Fired, Domestic-Water Heaters: ASME rated and stamped.

22 3400 - 4

- J. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4-M.
- K. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches (457 mm) above the floor.
- L. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect assembled domestic-water heaters and storage tanks specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.
- B. Hydrostatically test commercial domestic-water heaters and storage tanks to minimum of one and one-half times pressure rating before shipment.
- C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 01 4000 "Quality Requirements" for retesting and reinspecting requirements and Section 01 7300 "Execution" for requirements for correcting the Work.
- D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

- A. Commercial, Domestic-Water Heater Mounting: Install commercial domestic-water heaters on concrete base. Comply with requirements for concrete base specified in Section 03 3000 "Cast-in-Place Concrete."
 - 1. Exception: Omit concrete bases for commercial domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
 - 2. Maintain manufacturer's recommended clearances.
 - 3. Arrange units so controls and devices that require servicing are accessible.
 - 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
 - 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 7. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 8. Anchor domestic-water heaters to substrate.
- B. Residential, Domestic-Water Heater Mounting: Install residential domestic-water heaters on water-heater stand on floor or domestic-water heater mounting bracket as indicated on plans.
 - 1. Maintain manufacturer's recommended clearances.
 - 2. Arrange units so controls and devices that require servicing are accessible.

22 3400 - 5

- 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
- 5. Anchor domestic-water heaters to substrate.
- C. Tankless, Domestic-Water Heater Mounting: Install tankless, domestic-water heaters at least 18 inches, or as indicated on plans, above floor on wall bracket.
 - 1. Maintain manufacturer's recommended clearances.
 - 2. Arrange units so controls and devices that require servicing are accessible.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 5. Anchor domestic-water heaters to substrate.
- D. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
 - Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 22 0523.12 "Ball Valves for Plumbing Piping," Section 22 0523.13 "Butterfly Valves for Plumbing Piping," and Section 22 0523.15 "Gate Valves for Plumbing Piping."
- E. Install gas-fired, domestic-water heaters according to NFPA 54.
 - 1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
 - 2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
 - 3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.
 - Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Section 23 1123 "Facility Natural-Gas Piping." or Section 23 1126 "Facility Liquefied-Petroleum Gas Piping."
- F. Install oil-fired, domestic-water heaters according to NFPA 31.
 - Install shutoff valves on fuel-oil supply piping to oil-fired water-heater burners without shutoff valves. Comply with requirements for shutoff valves specified in Section 23 1113 "Facility Fuel-Oil Piping."
- G. Install commercial domestic-water heaters with seismic-restraint devices. Comply with requirements for seismic-restraint devices specified in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- H. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- I. Install combination temperature-and-pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping

22 3400 - 6

same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

- J. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 22 1119 "Domestic Water Piping Specialties."
- K. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Section 22 0519 "Meters and Gages for Plumbing Piping."
- L. Assemble and install inlet and outlet piping manifold kits for multiple domestic-water heaters. Fabricate, modify, or arrange manifolds for balanced water flow through each domestic-water heater. Include shutoff valve and thermometer in each domestic-water heater inlet and outlet, and throttling valve in each domestic-water heater outlet. Comply with requirements for valves specified in Section 22 0523.12 "Ball Valves for Plumbing Piping," Section 22 0523.13 "Butterfly Valves for Plumbing Piping," and Section 22 0523.15 "Gate Valves for Plumbing Piping," and comply with requirements for thermometers specified in Section 22 0519 "Meters and Gages for Plumbing Piping."
- M. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.
- N. Fill domestic-water heaters with water.
- O. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

- A. Comply with requirements for domestic-water piping specified in Section 22 1116 "Domestic Water Piping."
- B. Comply with requirements for fuel-oil piping specified in Section 23 1113 "Facility Fuel-Oil Piping."
- C. Comply with requirements for gas piping specified in Section 23 1123 "Facility Natural-Gas Piping." Or Section 23 1126 "Facility Liquefied-Petroleum Gas Piping."
- D. Drawings indicate general arrangement of piping, fittings, and specialties.
- E. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 3400 - 7

- 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
- 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 01 4000 "Quality Requirements" for retesting and reinspecting requirements and Section 01 7300 "Execution" for requirements for correcting the Work.
- C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial, gas-fired, storage, gas-fired, tankless, commercial, oil-fired, and commercial, gas- and oil-fired, domestic-water heaters.

END OF SECTION

SECTION 22 4100

PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bathtubs.
 - 2. Faucets.
 - 3. Whirlpool baths.
 - 4. Walk-in baths.
 - 5. Bidets.
 - 6. Lavatories.
 - 7. Showers.
 - 8. Bar sinks.
 - 9. Kitchen sinks.
 - 10. Laundry trays.
 - 11. Dishwasher air-gap fittings.
 - 12. Laminar-flow, faucet-spout outlets.
 - 13. Disposers.
 - 14. Hot-water dispensers.
 - 15. Water closets.
 - 16. Toilet seats.
 - 17. Supply fittings.
 - 18. Waste fittings.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted plumbing fixtures.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 4100 - 1

RESIDENTIAL PLUMBING FIXTURES B. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For plumbing fixtures and faucets to include in emergency, operation, and operation and maintenance manuals.
 - 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - a. Servicing and adjustments of whirlpool and walk-in baths.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
 - 3. Flushometer-Tank Repair Kits: Equal to 5 percent of amount of each type installed, but no fewer than two of each type.
 - 4. Toilet Seats: Equal to 5 percent of amount of each type installed, but no fewer than one of each type.

1.7 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of walk-in baths and whirlpool baths that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures of unit shell.
 - b. Faulty operation of controls, blowers, pumps, heaters, and timers.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 - 2. Warranty Period for Shells: 20 years from date of Substantial Completion.
 - 3. Warranty Period for Pumps and Blowers: Five years from date of Substantial Completion.
 - 4. Warranty Period for Electronic Controls: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 The product descriptions listed in the section may not all be used on this project. Refer to the Equipment Schedules on the drawings for the specific application for each product or material. Products not shown on the schedule for the specific application may not be substituted without pre-approval from the Engineer. Where there is a conflict between the drawing schedules and specifications, the drawing schedules shall take precedent. See Editing Instruction No. 1 in the Evaluations for cautions about named manufacturers and products. For an explanation of options and Contractor's product selection procedures, see Section 01 6000 "Product Requirements."

2.2 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing-fixture installation.
- B. Examine walls, floors, cabinets, and counters for suitable conditions where fixtures will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install plumbing fixtures level and plumb according to roughing-in drawings.
- B. Install floor-mounted water closets on closet flange attachments to drainage piping.
- C. Install counter-mounting fixtures in and attached to casework.
- D. Install pedestal lavatories on pedestals and secured to wood blocking in wall.
- E. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
 - 1. Exception: Use ball or gate valves if supply stops are not specified with fixture.
- F. Install tanks for accessible, tank-type water closets with lever handle mounted on wide side of compartment.
- G. Install toilet seats on water closets.
- H. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- I. Install shower flow-control fittings with specified maximum flow rates in shower arms.

22 4100 - 3

- J. Install traps on fixture outlets.
 - 1. Exception: Omit trap on fixtures with integral traps.
 - 2. Exception: Omit trap on indirect wastes unless otherwise indicated.
- K. Install disposer in outlet of each sink indicated to have a disposer. Install switch where indicated or in wall adjacent to sink if location is not indicated.
- L. Install dishwasher air-gap fitting at each sink indicated to have air-gap fitting. Connect inlet hose to dishwasher and outlet hose to disposer.
- M. Install hot-water dispensers in back top surface of sink or in countertop with spout over sink.
- N. Set bathtubs and shower receptors in leveling bed of cement grout.
- O. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories and sink. Comply with requirements in Section 22 0719 "Plumbing Piping Insulation."
- P. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 0518 "Escutcheons for Plumbing Piping."
- Q. Seal joints between plumbing fixtures, counters, floors, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 9200 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 22 1116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 22 1316 "Sanitary Waste and Vent Piping."
- D. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories and sinks. Comply with requirements in Section 22 0719 "Plumbing Piping Insulation."

3.4 ADJUSTING

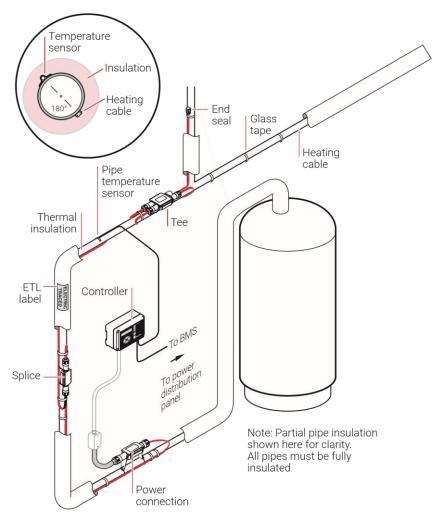
- A. Operate and adjust plumbing fixtures and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of plumbing fixtures, inspect and repair damaged finishes.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 4100 - 4


RESIDENTIAL PLUMBING FIXTURES

- B. Clean plumbing fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective covering for installed plumbing fixtures and fittings.
- D. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION

22 4100 - 6

CSI MASTER FORMAT 2012 GUIDE SPECIFICATION FOR HWAT

System for temperature maintenance of domestic hot water supply systems with energy efficient time based control and BMS communication capabilities.

SCOPE

This specification describes an energy efficient system for temperature maintenance of domestic hot water supply systems without the need for recirculation designs.

This page gives a general overview of the system and the CSI formatted specification begins on page four (4).

SYSTEM DESCRIPTION

The HWAT system complies with local energy codes, including California Title 24, due to a time based control methodology and an energy efficient thermal insulation schedule.

17-13 OSU, College of OsteopathicMedicine at Cherokee Nation25 50 00 - 1Childers Architect07-26-19

Self-Regulating Heating Cable nVent RAYCHEM HWAT self-regulating heating cable (HWAT-R2) with plasticizer diffusion shield, heavy tinned copper braid and polyolefin outer jacket. The heating cable shall be part of a UL Listed, CSA Certified and FM Approved system.

CSI MASTER FORMAT 2012 GUIDE SPECIFICATION FOR HWAT

System Connection Kits

RAYCHEM RayClic connection kits for power connections, tees/splices and end seals.

Controller

Single Circuit Control	Distributed Group Control
Single Circuit Control	Distributed Group Control

RAYCHEM HWAT-ECO digital controller with: RAYCHEM ACS-30 Multi-circuit digital control system with:

- Flexible temperature control from $105 - 140^{\circ}$ F - Pre-programmed application based heattracing controller

• Three programmable temperature set points for maximum • Touch-screen user interface (ACS-UIT2) communicates with up energy efficiency: to 52 ACS-PCM2-5 modular control panels.The RAYCHEM C910-

Maintain 485 controller may be used in the ACS-30 system for single circuit extensions

- Economy
- BMS interface
 - Off
- Controls up to 260 heat-tracing circuits with up to 388
- Heat cycle setting temperature inputs (RTDs)
- 24/7 time based control Proportional Ambient Sensing Control (PASC).
- Nine pre-defined temperature 30 A switching capacity rating setpoint programs
- Enclosure
- BMS interface
- ACS-UIT2: NEMA 4
- Pipe temperature sensor

– ACS-PCM2-5: NEMA 4/12

- Master/slave function
- 24 A switching capacity rating
- NEMA 12 enclosure **Device Server**

RAYCHEM ProtoNode: A multi-protocol device server to interface the ACS-30 with a building management system (BMS).

Thermal Pipe Insulation

Flame retardant insulation (closed-cell or fiberglass) with waterproof covering is required following nVent insulation schedule as detailed in the HWAT Product Selection and Design Guide.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

25 50 00 - 2

SYSTEM DESCRIPTION

Designer Notes

1. For proper cable selection refer to the HWAT product selection and design guide.

2. External 30-mA ground-fault circuit protection is required when using the HWAT-ECO. Ground-fault circuit protection (adjustable) is integrated in the ACS-30 controller and does not need to be provided separately.

3. No temperature sensors are required for pipe temperature control. Temperature sensors can be used to monitor the water heater or mixing valve output. With ACS-30, additional temperature sensors can be used to monitor the overall performance of the system.

4. The HWAT-ECO may be connected to the BMS using two conductor twisted pair shielded RS-485 cable (PTM Catalog Number: MONI-RS485-WIRE). The installation of the communication wiring is included in specification section 25 50 00.

5. The ACS-30 may be connected to the BMS through the ProtoNode using two conductor twisted pair shielded RS-485 cable (PTM Catalog Number: MONI-RS485-WIRE). The ProtoNode is connected to the BMS by Ethernet or RS-485. The installation of the communication wiring is included in specification section 25 50 00.

6. The HWAT-ECO is a wall mounted controller with a NEMA 12 rated enclosure for indoor installation.

7. ACS-UIT2 should be centrally located in the building connected to the remote ACS-PCM2-5 control panels using RS-485 cable. The ACS-PCM2-5 control panels may be located indoors or outdoors throughout the installation.

8. The location of the controller, power connection, tees/splices and end seals must be shown on the drawings.

Drawing Details

Installation details can be found at CADdetails.com under Hot Water Temperature Maintenance (HWAT) folder.

SECTION 22 5214

HEAT TRACING FOR PLUMBING PIPING

PART 1 – GENERAL

1.01 SUMMARY

A. This Section includes a UL Listed, CSA Certified and FM Approved heat tracing system for temperature maintenance of domestic hot water supply systems consisting of self-regulating heating cable, connection kits and energy efficient time based control.

B. The system complies with California Title 24 energy requirements.

1.02 RELATED SECTIONS

A. Section 22 0533 – Heat Tracing for Plumbing Piping

B. Section 22 0719 – Plumbing Piping Insulation

C. Section 25 3400 – Integrated Automation Instrumentation and Terminal Devices for Plumbing

D. Section 25 5400 – Integrated Automation Control of Plumbing

1.03 SYSTEM DESCRIPTION [Select one]

A. [Select for HWAT-ECO] System for temperature maintenance of domestic hot water supply systems with energy efficient time based control, monitoring, and Building Management System (BMS) communication capabilities.

B. [Select for ACS-30] System for temperature maintenance of domestic hot water supply systems with energy efficient time based control, multi-point monitoring, integrated ground-fault circuit protection and Building Management System (BMS) communication capabilities.

1.04 SUBMITTALS

A. Product Data

- 1. Heating cable data sheet
- 2. UL, CSA, FM approval certificates for hot water temperature maintenance systems
- 3. Hot water temperature maintenance design guide
- 4. System installation and operation manual
- 5. System installation details
- 6. Connection kits and accessories data sheet
- 7. Controller data sheet
- 8. Controller wiring diagram

1.05 QUALITY ASSURANCE

- A. Manufacturers' Qualifications
 - 1. Manufacturer to show minimum of thirty (30) years experience in manufacturing electric self-regulating heating cables.
 - 2. Manufacturer will be ISO-9001 registered.
 - 3. Manufacturer to provide products consistent with IEEE 515.1 and CSA 22.2 No 130-03 requirements.
- B. Installer Qualifications

1. System installer shall have complete understanding of product and product literature from manufacturer or authorized representative prior to installation. Electrical connections shall be performed by a licensed electrician.

C. Regulatory Requirements and Approvals

17-13 OSU, College of Osteopathic
Medicine at Cherokee Nation

25 50 00 - 4

Childers Architect

1. The system (heating cable, connection kits, and controller) shall be UL Listed, CSA Certified and FM Approved for hot water temperature maintenance.

D. Electrical Components, Devices, and Accessories: Listed and labelled as defined in NFPA 70, Article 100, by a Nationally Recognized Testing Laboratory (NRTL), and marked for intended use.

1.06 DELIVERY, STORAGE AND HANDLING

A. General Requirements: Deliver, store and handle products to prevent their deterioration or damage due to moisture, temperature changes, contaminates or other causes.

B. Delivery and Acceptance Requirements: Deliver products to site in original, unopened containers or packages with intact and legible manufacturers' labels identifying the following:

- 1. Product and Manufacturer
- 2. Length/Quantity
- 3. Lot Number
- 4. Installation and Operation Manual
- 5. MSDS (if applicable)
- C. Storage and Handling Requirements
 - 1. Store the heating cable in a clean, dry location with a temperature range $0^{\circ}F(-18^{\circ}C)$ to $140^{\circ}F(60^{\circ}C)$.
 - 2. Protect the heating cable from mechanical damage.

1.07 WARRANTY

A. Extended Warranty

1. Manufacturer shall offer a ten (10) year warranty for all heating cables and components. Provide one (1) year warranty for all heat trace controllers.

2. Contractor shall submit to owner results of installation tests required by the manufacturer.

PART 2 – PRODUCTS

2.01 MANUFACTURERS AND PRODUCTS

- A. Contract Documents are based on manufacturer and products named below to establish a standard of quality.
- B. Basis of Design

1. Basis of Design Product Selections

a. Manufacturer

1. Manufacturers shall have more than thirty (30) years' experience with manufacture & installation self-regulating heating cables.

2. Manufacturer shall provide UL, CSA, FM approval certificates for hot water temperature maintenance system

3. Manufacturer shall be nVent, LLC, located at, 7433 Harwin Drive, Houston, TX 77036 Tel: (800) 545-6258, nVent.com.

b. Hot Water Temperature Maintenance System

1. RAYCHEM HWAT self-regulating heating cables with plasticizer diffusion shield, heavy tinned copper braid and polyolefin outer jacket.

2. RAYCHEM RayClic and accessories.

17-13 OSU, College of Osteopathic
Madicina at Charakaa Nation

Medicine at Cherokee Nation 25 50 00 - 5

Childers Architect

3. RAYCHEM HWAT-ECO or RAYCHEM ACS-30 [Select one] digital controller.

4. RAYCHEM ProtoNode multi-protocol device server.

5. The HWAT system complies with local energy codes, including California Title 24, due to a time based control methodology (HWAT-ECO or ACS-30 [Select one]) and an energy efficient thermal insulation schedule.

2.02 PRODUCTS, GENERAL

A. Single Source Responsibility: Furnish heat tracing system for the temperature maintenance of domestic hot water supply systems from a single manufacturer.

B. The system (heating cable, connection kits, and controller) shall be UL Listed, CSA Certified and FM Approved for hot water temperature maintenance. No parts of the system may be substituted or exchanged.

2.03 PRODUCTS

A. Self-Regulating Heating Cable

1. Heating cable shall be RAYCHEM HWAT self-regulating heating cable manufactured by nVent. a. Model Numbers: HWAT-R2

2. The heating cable shall consist of a continuous core of conductive polymer that is radiation crosslinked, extruded between two (2) 16 AWG nickel-plated copper bus wires that varies its power output in response to pipe temperature changes.

3. The heating cable shall have a modified polyolefin inner jacket for dielectric integrity.

4. The heating cable shall have a plasticizer diffusion shield.

5. The heating cable shall have a thicker gauge (5/24) tinned copper braid for ground path and mechanical ruggedness.

6. The heating cable shall have a color coded polyolefin outer jacket.

7. The heating cable shall have a self-regulating factor of at least 70 percent for HWAT-R2. The self-regulating factor is defined as the percent reduction of the heating cable power output going from a 40°F pipe temperature to 150°F pipe temperature.

8. The heating cable shall operate on line voltages of 208, 220, 240 or 277 volts without the use of transformers. **[Select one]**

9. The heating cable shall be UL part of a UL Listed, CSA Certified and FM Approved system.

10. The outer jacket of the heating cable shall have the following markings:

- a. Heating cable model number
- b. Agency listings
- c. Meter mark
- d. Lot/Batch ID
- B. Heating Cable Connection Kits
 - 1. Heating cable connection kits shall be RAYCHEM RayClic connection kits.

2. Manufacturer shall provide power connection, splice/tee and end seal kits compatible with selected heating cable.

3. Installation shall not require the installing contractor to cut into the heating-cable core to expose the bus wires.

4. Connection kits shall be rated NEMA 4X to prevent water ingress and corrosion. All components shall be UV stabilized.

- 5. Connection kits shall be UL Listed and CSA Certified.
- C. Heating Cable Installation Accessories
 - 1. High temperature, glass filament tape for attachment of heating cable to fire sprinkler piping. Cable ties are not permitted. (PTM Catalog Number: GT-66)

17-13 OSU, College of Osteopathic

Medicine at Cherokee Nation	25 50 00 - 6

Childers Architect

2. Plastic Piping – provide an aluminium self-adhesive tape over the heating cable on all plastic piping if required. (PTM Catalog Number: AT-180)

3. Labels – Provide warning labels every 10 feet on exterior of insulation, opposite sides of pipe. (PTM Catalog Number: ETL)

D. Energy Efficient Time Based Control [Select one option]

1. [Option 1] Single Circuit Local Digital Controller

a. Local digital controller shall be the RAYCHEM HWAT-ECO.

b. Digital controller shall operate on 208 – 240 V.

c. Pre-programmed duty cycles based on ambient temperature ranging from $60 - 80^{\circ}$ F.

d. The pre-programmed duty cycles shall be based on RAYCHEM HWAT heating cables only. No other heating cables may be used with the HWAT-ECO controller. e. Flexible temperature control from $105 - 140^{\circ}$ F.

f. Three programmable temperature set points for maximum energy efficiency.

- 1. Maintain
- 2. Economy
- 3. Off

g. Controller shall have heat cycle setting.

h. Heating cable manufacturer shall provide a local digital controller with 24/7 preprogrammed time based profiles specific to the selected heating cable application such as schools, hospitals and prisons.

i. Controller shall have remote temperature setting through 0 – 10 Vdc BMS interface.

j. Controller shall have a pipe temperature sensor, low/high pipe temperatures alarms and high temperature cut-out.

1. To maximize the energy efficiency of the HWAT system by verifying that the hot pipe temperature is at the correct temperature (low temperature alarm).

2. To monitor and alarm if the pipe temperature is hotter than intended (high temperature alarm and cut-out)

k. Multiple HWAT-ECO controllers can be networked together (master/slave association):

1. Allows BMS to interface with a master HWAT-ECO to control cloned circuits

2. Minimizes the number of HWAT-ECO controllers that must be individually programmed

I. Controller shall have 24 A switching capacity rating.

m.Enclosure type shall be NEMA 12 (ABS).

n. Controller shall have NO/NC alarm contacts. Controller shall alarm on:

- 1. Loss of power
- 2. Controller reinitialized
- 3. Internal controller temperature too high
- 4. Pipe temperature too high
- 5. Pipe temperature too low
- 6. Master/slave error

o. Digital controller shall have c-UL-us approvals specifically for use with the HWAT-R2 heating cable.

2. [Option 2] Multiple Circuit Distributed Digital Control System

a. Distributed digital control system shall be RAYCHEM ACS-30 heat-trace control system.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation

25 50 00 - 7

Childers Architect

b. Heating cable manufacturer shall provide a distributed digital control system with preprogrammed parameters to provide concurrent control for heating cables used for pipe freeze protection, flow maintenance, hot water temperature maintenance, surface snow melting, roof and gutter de-icing, freezer frost heave prevention and floor heating applications.

c. All programming shall be done through the central User Interface Terminal (ACS-UIT2).

d. The ACS-UIT2 shall be a color LCD touch-screen display with password protection to prevent unauthorized access to the system.

e. The ACS-UIT2 shall communicate with up to fifty-two (52) ACS Power Control Panels (ACSPCM2-5) where each panel can control up to five (5) circuits and accept up to five (5) temperature inputs. C910-485 controllers may also be added to the ACS-30 system for single circuit extensions.

f. Digital control system shall be capable of assigning up to four (4) RTD temperature inputs per heat-tracing circuit.

g. The ACS-UIT2 shall communicate with up to sixteen (16) Remote Monitoring Modules (RMM2), where each module can accept up to 8 temperature inputs.

h. The ACS-UIT2 shall have a USB port to allow for quick and easy software update.i. The ACS-UIT2 shall have three (3) programmable alarm contacts including an alarm light on the enclosure cover.

 j. A separate offline software tool shall be made available to allow users to preprogram the digital control system and transfer program via a USB drive or Ethernet.
 k. The ACS-UIT2 enclosure shall be NEMA 4 for indoor or outdoor locations.

I. The ACS-PCM2-5 panel shall be in a NEMA 4/12 enclosure approved for nonhazardous indoor and outdoor locations.

m.The ACS-PCM2-5 panel shall provide ground-fault and line current sensing, alarming, switching and temperature inputs for five (5) heat tracing circuits.

n. Each ACS-PCM2-5 panel shall have five (5) 3-pole, 30 A contactors (EMR type).

o. The ACS-PCM2-5 panel shall be capable of operating at 120 V to 277 V.

p. The ACS-PCM2-5 shall have an alarm contact including an alarm light on the panel cover.

q. Digital controller shall have an integrated adjustable GFPD (10 – 200 mA).

r. Digital control system can be configured for On/Off, ambient sensing, PASC and timed duty cycle control (HWAT only) modes based on the application. PASC control proportionally energizes the power to the heating cable to minimize energy based on ambient sensed conditions.

s. Upon communication loss with the user interface terminal (ACS-UIT2) the ACS-PCM2-5 panels shall control with the last downloaded set point.

t. In HWAT control mode, the ACS-30 shall have time based control algorithm with three programmable temperature setpoints for maximum energy efficiency (Maintain, Economy and Off)

u. In HWAT control mode, the pre-programmed duty cycles shall be based on RAYCHEM HWAT heating cables only. No other heating cables may be used in the HWAT control mode.

v. Digital control system will have a built-in self-test feature to verify proper functionality of heating cable system.

w. Digital control system will also be able to communicate with BMS by one of the following protocols using the RAYCHEM ProtoNode multi-protocol gateway. [Select one]

1. Modbus®

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation

25 50 00 - 8

Childers Architect

2. LonWorks[®] [Select ProtoNode-LER] 3. BACnet[®] [Select ProtoNode-RER] 4. Metasys[®] N2 [Select ProtoNode-RER]

x. The following variables will be monitored by the digital controller and reported back to the BMS. 1. Temperature

- 2. Ground-fault
- 3. Current draw
- 4. Power consumption
- 5. Associated alarms

y. The ACS-UIT2 shall be c-CSA-us Certified. The ACS-PCM2-5 panel shall be c-UL-us Listed.

E. Thermal Pipe Insulation

1. Pipes must be thermally insulated in accordance with the HWAT Design Guide requirements.

2. Thermal insulation must be a type that is flame retardant (closed-cell or fiberglass) with waterproof covering.

2.04 SYSTEM LISTING

A. The system (heating cable, connection kits, and controller) shall be UL Listed, CSA Certified and FM Approved for hot water temperature maintenance.

B. The temperature maintenance system shall have a design, installation and operating manual specific to domestic hot water piping.

PART 3 - EXECUTION

3.01 INSTALLERS

A. Acceptable Installers

1. Subject to compliance with requirements of Contract Documents, installer shall be familiar with installing heat-trace cable and equipment.

3.02 INSTALLATION

A. Comply with manufacturer's recommendations in the HWAT System Installation and Operation Manual.

B. Apply the heating cable linearly on the pipe after piping has successfully completed any pressure tests. Secure the heating cable to piping with fiberglass tape.

C. Install electric heating cable according to the drawings and the manufacturer's instructions. The installer shall be responsible for providing a complete functional system, installed in accordance with applicable national and local requirements.

D. Grounding of controller shall be equipment according to Section 26 0526 "Grounding and Bonding for Electrical Systems." E. Connection of all electrical wiring shall be according to Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

F. Pipes must be thermally insulated in accordance with the HWAT design guide requirements.

3.03 FIELD QUALITY CONTROL

A. Initial start-up and field testing (commissioning) of the system shall be performed by factory technician or factory representative per the owner's requirements.

B. Field Testing and Inspections

1. The system shall be commissioned in accordance to the HWAT Installation and Operation manual.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation	25 50 00 - 9
Childers Architect	
07-26-19	

2. The heating cable circuit integrity shall be tested using a 2500 Vdc megohmmeter at the following intervals; a. Before installing the heating cable

- b. After heating cable has been installed onto the pipe
- c. After installing connection kits
- d. After the thermal insulation is installed onto the pipe
- e. Prior to initial start-up (commissioning)
- f. As part of the regular system maintenance
- g. Minimum acceptable insulation resistance shall be 1000 megohms or greater

3. The technician shall verify the insulation schedule is in compliance with the HWAT Installation and Operation manual.

4. The technician shall verify that the HWAT-ECO **OR** ACS-30 **[Select one]** control parameters are set to the application requirements.

5. The technician shall verify that the HWAT-ECO **OR** ACS-30 **[Select one]** alarm contacts are corrected connected to the BMS.

6. The technician shall verify that the ACS-30 and ProtoNode-RER/-LER [Select one] are configured correctly with the BMS.

7. All commissioning results will be recorded and presented to the owner.

3.04 MAINTENANCE

A. Maintenance Service

1. Comply with manufacturer's recommendations in HWAT System Installation and Operation Manual.

END OF SECTION

SECTION 22 6213

VACUUM PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Medical-surgical vacuum piping, designated "medical vacuum."
 - 2. Waste anesthetic gas disposal piping, designated "WAGD."
 - 3. Dental vacuum piping, designated "dental vacuum."

B. Related Requirements:

- 1. Section 22 6219 "Vacuum Equipment for Laboratory and Healthcare Facilities" for vacuum producers and accessories.
- 2. Section 22 6400 "Medical Gas Alarms" for vacuum piping alarms.

1.3 DEFINITIONS

- A. HVE: High-volume (oral) evacuation.
- B. WAGD: Waste anesthetic gas disposal.
- C. Medical vacuum piping systems include medical vacuum, WAGD, dental vacuum, HVE, and medical laboratory vacuum piping systems.
- D. Nonmedical laboratory vacuum piping systems include laboratory low-vacuum and laboratory high-vacuum piping systems.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer and testing agency.
- B. Material Certificates: Signed by Installer certifying that medical vacuum piping materials comply with requirements in NFPA 99.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 6213 - 1

- C. Brazing certificates.
- D. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For vacuum piping specialties to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Quick-Coupler Service Connections: Furnish complete noninterchangeable medical vacuum suction inlets.
 - a. Medical Vacuum: Equal to 10 percent of amount installed, but no fewer than one units.
 - b. WAGD: Equal to 10 percent of amount installed, but no fewer than one units.
 - 2. D.I.S.S. Service Connections: Furnish complete medical vacuum suction inlets complying with CGA V-5.
 - a. Medical Vacuum D.I.S.S. No. 1220: Equal to 10 percent of amount installed, but no fewer than one units.
 - b. WAGD D.I.S.S. No. 2220: Equal to 10 percent of amount installed, but no fewer than one units.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Medical Vacuum Piping Systems for Healthcare Facilities: According to ASSE Standard #6010 for medical-gas-system installers.
 - 2. Shape-Memory-Metal Coupling Joints: An authorized representative who is trained and approved by manufacturer.
- B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the vacuum piping testing indicated, that is a member of the Medical Gas Professional Healthcare Organization or is an NRTL, and that is acceptable to authorities having jurisdiction.
 - 1. Qualify testing personnel according to ASSE Standard #6020 for medical-gas-system inspectors and ASSE Standard #6030 for medical-gas-system verifiers.
- C. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications"; or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."

22 6213 - 2

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Medical vacuum operating at 30 in. Hg.
- B. WAGD operating at [14 in. Hg] [15 in. Hg] <Insert value>.
- C. Dental vacuum operating at [10 in. Hg] [12 in. Hg] <Insert value>.
- D. HVE operating at [5 in. Hg] [8 in. Hg] <Insert value>.
- E. Medical laboratory vacuum operating at [12 in. Hg] [20 in. Hg] [24 in. Hg] < Insert value>.
- F. Laboratory low vacuum operating at [12 in. Hg] [20 in. Hg] <Insert value>.
- G. Laboratory high vacuum operating at [24 in. Hg] [29 in. Hg] <Insert value>.

2.2 PIPES, TUBES, AND FITTINGS

- A. Comply with NFPA 99 for medical vacuum piping materials.
- B. Copper Medical Gas Tube: ASTM B 819, Type L, seamless, drawn temper that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service. Include standard color marking "OXY," "MED," "OXY/MED," "OXY/ACR," or "ACR/MED" in blue.
- C. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service.
- D. Copper Unions: ASME B16.22 or MSS SP-123, wrought-copper or cast-copper alloy.
- E. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150.
 - 1. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness, full-face type.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel.
- F. Shape-Memory-Metal Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Aerofit, Inc</u>.
 - b. <u>Smart Tap, Inc</u>.
 - 2. Description: Cryogenic compression fitting made of nickel-titanium, shape-memory alloy, and that has been manufacturer cleaned, purged, and sealed for oxygen service according to CGA G-4.1.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 6213 - 3

- G. Flexible Pipe Connectors:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Flex-Hose Co., Inc</u>.
 - b. Flexicraft Industries.
 - c. <u>Hyspan Precision Products, Inc</u>.
 - d. Mercer Gasket & Shim, Inc.
 - e. <u>Metraflex Company (The)</u>.
 - f. <u>Proco Products, Inc</u>.
 - g. <u>Unaflex</u>.
 - h. <u>Universal Metal Hose; a Hyspan Co</u>.
 - 2. Description: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 - a. Working-Pressure Rating: 200 psig minimum.
 - b. End Connections: Plain-end copper tube.

2.3 JOINING MATERIALS

A. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys.

2.4 VALVES

- A. General Requirements for Valves: Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.
 - 1. Exception: Factory cleaning and bagging are not required for valves for WAGD service.
- B. Zone-Valve Box Assemblies: Box with medical gas valves, tube extensions, and gages.
 - 1. Zone-Valve Boxes:
 - a. Steel Box with Aluminum Cover:
 - 1) Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a) <u>Allied Healthcare Products Inc</u>.
 - b) <u>Amico Corporation</u>.
 - c) <u>Ohio Medical Corporation</u>.
 - b. Description: Formed steel box with cover, anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with pressure gages and in sizes required to permit manual operation of valves. Medical air and medical vacuum tubing, valves, and gages may be incorporated in zone valve boxes for medical gases.
 - 1) Interior Finish: Factory-applied white enamel.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 6213 - 4

- 2) Cover Plate: Aluminum with frangible or removable windows.
- 3) Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.
- C. Copper-Alloy Ball Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Allied Healthcare Products Inc.; Chemetron Division</u>.
 - b. <u>Amico Corporation</u>.
 - c. <u>BeaconMedaes</u>.
 - d. <u>Conbraco Industries, Inc</u>.
 - e. <u>Marwin Valve; a division of Richards Industries</u>.
 - f. <u>NIBCO INC</u>.
 - g. <u>Ohio Medical Corporation</u>.
 - h. <u>Tri-Tech Medical Inc</u>.
 - 2. Description: Three-piece body, brass or bronze.
 - 3. Pressure Rating: 300 psig minimum.
 - 4. Ball: Full-port, chrome-plated brass.
 - 5. Seats: PTFE or TFE.
 - 6. Handle: Lever type with locking device.
 - 7. Stem: Blowout proof with PTFE or TFE seal.
 - 8. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions and manufacturerinstalled ASTM B 819, copper-tube extensions with pressure gage on one copper-tube extension.
- D. Check Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Allied Healthcare Products Inc.; Chemetron Division</u>.
 - b. <u>Amico Corporation</u>.
 - c. <u>BeaconMedaes</u>.
 - d. <u>Conbraco Industries, Inc</u>.
 - e. <u>Ohio Medical Corporation</u>.
 - f. <u>Tri-Tech Medical Inc</u>.
 - 2. Description: In-line pattern, bronze.
 - 3. Pressure Rating: 300 psig minimum.
 - 4. Operation: Spring loaded.
 - 5. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.

2.5 MEDICAL VACUUM SERVICE CONNECTIONS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Allied Healthcare Products Inc.; Chemetron Division</u>.
 - 2. <u>Amico Corporation</u>.
 - 3. <u>BeaconMedaes</u>.
 - 4. <u>Ohio Medical Corporation</u>.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 6213 - 5

- 5. <u>Oxequip Health Industries; a division of Allied Healthcare Products Inc.</u>
- 6. <u>Tri-Tech Medical Inc</u>.
- B. General Requirements for Medical Vacuum Service Connections:
 - 1. Suitable for specific medical vacuum service listed.
 - 2. Include roughing-in assemblies, finishing assemblies, and cover plates.
 - 3. Individual cover plates are not required if service connection is in multiple unit or assembly with cover plate.
 - 4. Recessed-type units made for concealed piping unless otherwise indicated.
- C. Roughing-in Assembly:
 - 1. Steel outlet box for recessed mounting and concealed piping.
 - 2. Brass-body inlet block.
 - 3. Seals that will prevent vacuum leakage.
 - 4. ASTM B 819, NPS 3/8 copper outlet tube brazed to valve with service marking and tubeend dust cap.
- D. Finishing Assembly:
 - 1. Brass housing with primary check valve.
 - 2. Seals that will prevent vacuum leakage.
 - 3. Cover plate with gas-service label.
- E. Quick-Coupler Suction Service Connections:
 - 1. Inlets for medical vacuum and WAGD with noninterchangeable keyed indexing to prevent interchange between services.
 - 2. Constructed to permit one-handed connection and removal of equipment.
 - 3. With positive-locking ring that retains equipment stem in valve during use.
- F. D.I.S.S. Suction Service Connections:
 - 1. Inlets complying with CGA V-5.
 - 2. Threaded indexing to prevent interchange between services.
 - 3. Constructed to permit one-handed connection and removal of equipment.
 - 4. Medical Vacuum: CGA V-5, D.I.S.S. No. 1220.
 - 5. WAGD: CGA V-5, D.I.S.S. No. 2220.
- G. Vacuum Bottle Brackets: One piece, with pattern and finish matching corresponding service cover plate.
- H. Cover Plates:
 - 1. One piece.
 - 2. Aluminum or stainless steel.
 - 3. Permanent, color-coded, identifying label matching corresponding service.

2.6 NITROGEN

A. Comply with USP 32 - NF 27 for oil-free dry nitrogen.

17-13 OSU, College of Osteopathic Medicine at		VACUUM PIPING FOR
Cherokee Nation	22 6213 - 6	LABORATORY AND
Childers Architect		HEALTHCARE FACILITIES
07-26-19		

PART 3 - EXECUTION

3.1 PREPARATION

- A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing is not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction perform the following procedures:
 - 1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1.
 - 2. Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb of chemical to 3 gal. of water.
 - a. Scrub to ensure complete cleaning.
 - b. Rinse with clean, hot water to remove cleaning solution.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of vacuum piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, vacuum producer sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Comply with NFPA 99 for installation of vacuum piping.
- C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.
- F. Install piping adjacent to equipment and specialties to allow service and maintenance.
- G. Install vacuum piping with 1 percent slope downward in direction of flow.
- H. Install nipples, unions, special fittings, and valves with pressure ratings same as or higher than piping pressure rating used in applications specified in "Piping Schedule" Article unless otherwise indicated.
- I. Install eccentric reducers, if available, where vacuum piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.
- J. Provide drain leg and drain trap at end of each main and branch and at low points.
- K. Install thermometer and vacuum gage on inlet piping to each vacuum producer and on each

17-13 OSU, College of Osteopathic Medicine at		VACUUM PIPING FOR
Cherokee Nation	22 6213 - 7	LABORATORY AND
Childers Architect		HEALTHCARE FACILITIES
07-26-19		

receiver and separator. Comply with requirements in Section 22 0519 "Meters and Gages for Plumbing Piping."

- L. Install piping to permit valve servicing.
- M. Install piping free of sags and bends.
- N. Install fittings for changes in direction and for branch connections. Extruded-tee branch outlets in copper tubing may be made where specified.
- O. Install medical vacuum piping from medical vacuum service connections specified in this Section, to equipment specified in Section 22 6219 "Vacuum Equipment for Laboratory and Healthcare Facilities," and to equipment specified in other Sections requiring medical vacuum service.
- P. Install medical vacuum service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.
- Q. Install medical vacuum bottle bracket adjacent to each wall-mounted medical vacuum service connection suction inlet.
- R. Connect vacuum piping to vacuum producers and to equipment requiring vacuum service.
- S. Install unions in copper vacuum tubing adjacent to each valve and at final connection to each machine, specialty, and piece of equipment.
- T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 0518 "Escutcheons for Plumbing Piping."

3.3 VALVE INSTALLATION

- A. Install shutoff valve at each connection to and from vacuum equipment and specialties.
- B. Install check valves to maintain correct direction of vacuum flow to vacuum-producing equipment.
- C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.
- D. Install zone valves and gages in valve boxes. Rotate valves to angle that prevents closure of cover when valve is in closed position.
- E. Install flexible pipe connectors in suction inlet piping to each vacuum producer.

3.4 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before

17-13 OSU, College of Osteopathic Medicine at		VACUUM PIPING FOR
Cherokee Nation	22 6213 - 8	LABORATORY AND
Childers Architect		HEALTHCARE FACILITIES
07-26-19		

assembly.

- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" chapter. Do not use flux. Continuously purge joint with oil-free dry nitrogen during brazing.
- E. Flanged Joints:
 - 1. Copper Tubing: Install flange on copper tubes. Use pipe-flange gasket between flanges. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.
- F. Shape-Memory-Metal Coupling Joints: Join new copper tube to existing tube according to procedures developed by fitting manufacturer for installation of shape-memory-metal coupling joints.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- B. Comply with requirements in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.
- C. Vertical Piping: MSS Type 8 or Type 42, clamps.
- D. Individual, Straight, Horizontal Piping Runs:
 - 1. 100 Feet and Less: MSS Type 1, adjustable, steel, clevis hangers.
 - 2. Longer Than 100 Feet: MSS Type 43, adjustable, roller hangers.
- E. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.
- F. Base of Vertical Piping: MSS Type 52, spring hangers.
- G. Support horizontal piping within 12 inches of each fitting and coupling.
- H. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch- minimum rods.
- I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4: 60 inches with 3/8-inch rod.
 - 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 - 3. NPS 3/4: 84 inches with 3/8-inch rod.
 - 4. NPS 1: 96 inches with 3/8-inch rod.
 - 5. NPS 1-1/4: 108 inches with 3/8-inch rod.
 - 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 - 7. NPS 2: 11 feet with 3/8-inch rod.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 6213 - 9

- 8. NPS 2-1/2: 13 feet with 1/2-inch rod.
- 9. NPS 3: 14 feet with 1/2-inch rod.
- 10. NPS 3-1/2: 15 feet with 1/2-inch rod.
- 11. NPS 4: 16 feet with 1/2-inch rod.
- 12. NPS 5: 18 feet with 1/2-inch rod.
- 13. NPS 6: 20 feet with 5/8-inch rod.
- 14. NPS 8: 23 feet with 3/4-inch rod.
- J. Install supports for vertical copper tubing every 10 feet.

3.6 IDENTIFICATION

- A. Install identifying labels and devices for laboratory vacuum piping, valves, and specialties. Comply with requirements in Section 22 0553 "Identification for Plumbing Piping and Equipment."
- B. Install identifying labels and devices for medical vacuum piping systems according to NFPA 99. Use the following or similar captions and color-coding for piping products where required by NFPA 99:
 - 1. Medical Vacuum: Black letters on white background.
 - 2. WAGD: White letters on violet background.
 - 3. Dental Vacuum: Black boxed letters on white-and-black diagonal stripe background.
 - 4. HVE: Black boxed letters on white-and-black diagonal stripe background.
 - 5. Medical Laboratory Vacuum: Black boxed letters on white-and-black checkerboard background.

3.7 FIELD QUALITY CONTROL FOR HEALTHCARE FACILITY MEDICAL VACUUM PIPING

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections of medical vacuum piping systems in healthcare facilities and to prepare test and inspection reports.
- B. Tests and Inspections:
 - 1. Medical Vacuum Testing Coordination: Perform tests, inspections, verifications, and certification of medical vacuum piping systems concurrently with tests, inspections, and certification of medical compressed-air piping and medical gas piping systems.
 - 2. Preparation: Perform the following Installer tests according to requirements in NFPA 99 and ASSE Standard #6010:
 - a. Initial blowdown.
 - b. Initial pressure test.
 - c. Cross-connection test.
 - d. Piping purge test.
 - e. Standing pressure test for vacuum systems.
 - f. Repair leaks and retest until no leaks exist.
 - 3. System Verification: Perform the following tests and inspections according to NFPA 99, ASSE Standard #6020, and ASSE Standard #6030:
 - a. Standing pressure test.
 - b. Individual-pressurization or pressure-differential cross-connection test.
 - c. Valve test.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

22 6213 - 10

- d. Master and area alarm tests.
- e. Piping purge test.
- f. Final tie-in test.
- g. Operational vacuum test.
- h. Verify correct labeling of equipment and components.
- 4. Testing Certification: Certify that specified tests, inspections, and procedures have been performed and certify report results. Include the following:
 - a. Inspections performed.
 - b. Procedures, materials, and gases used.
 - c. Test methods used.
 - d. Results of tests.
- C. Remove and replace components that do not pass tests and inspections and retest as specified above.

3.8 FIELD QUALITY CONTROL FOR LABORATORY FACILITY NONMEDICAL VACUUM PIPING

- A. Testing Agency: Engage qualified testing agency to perform field tests and inspections of vacuum piping in nonmedical laboratory facilities and to prepare test and inspection reports.
- B. Tests and Inspections:
 - 1. Piping Leak Tests for Vacuum Piping: Test new and modified parts of existing piping. Cap and fill vacuum piping with oil-free, dry nitrogen. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
 - a. Test Pressure for Copper Tubing: 100 psig.
 - 2. Repair leaks and retest until no leaks exist.
 - 3. Inspect filters for proper operation.
- C. Remove and replace components that do not pass tests and inspections and retest as specified above.

3.9 **PROTECTION**

- A. Protect tubing from damage.
- B. Retain sealing plugs in tubing, fittings, and specialties until installation.
- C. Clean tubing not properly sealed, and where sealing is damaged, according to "Preparation" Article.

3.10 PIPING SCHEDULE

A. Connect new copper tubing to existing copper tubing with memory-metal couplings.

17-13 OSU, College of Osteopathic Medicine at		VACUUM PIPING FOR
Cherokee Nation	22 6213 - 11	LABORATORY AND
Childers Architect		HEALTHCARE FACILITIES
07-26-19		

- B. Flanges may be used where connection to flanged equipment is required.
- C. Medical Vacuum Piping: Use copper medical gas tube, wrought-copper fittings, and brazed joints.
- D. WAGD Piping: Use copper medical gas tube, wrought-copper fittings, and brazed joints.
- E. Dental Vacuum Piping: Use copper water tube, wrought-copper fittings, and brazed joints.

3.11 VALVE SCHEDULE

- A. Shutoff Valves:
 - 1. Copper Tubing: Copper-alloy ball valve with manufacturer-installed ASTM B 819, copper-tube extensions.
- B. Zone Valves: Copper-alloy ball valve with manufacturer-installed ASTM B 819, copper-tube extensions with pressure gage on one copper-tube extension.

END OF SECTION

SECTION 23 0513

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with NEMA MG 1 unless otherwise indicated.
- B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

23 0513 - 1

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Multispeed Motors: Separate winding for each speed.
- F. Rotor: Random-wound, squirrel cage.
- G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- H. Temperature Rise: Match insulation rating.
- I. Insulation: Class F.
- J. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0513 - 2

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

- 1. Permanent-split capacitor.
- 2. Split phase.
- 3. Capacitor start, inductor run.
- 4. Capacitor start, capacitor run.
- B. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- C. Motors 1/20 HP and Smaller: Shaded-pole type.
- D. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

SECTION 23 0514

VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes separately enclosed, preassembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.

1.3 DEFINITIONS

- A. BAS: Building automation system.
- B. CE: Conformite Europeene (European Compliance).
- C. CPT: Control power transformer.
- D. EMI: Electromagnetic interference.
- E. LED: Light-emitting diode.
- F. NC: Normally closed.
- G. NO: Normally open.
- H. OCPD: Overcurrent protective device.
- I. PID: Control action, proportional plus integral plus derivative.
- J. RFI: Radio-frequency interference.
- K. VFC: Variable-frequency motor controller.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type and rating of VFC indicated.
 - 1. Include dimensions and finishes for VFCs.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For each VFC indicated.
 - 1. Include mounting and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2923 - 1

3. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Required working clearances and required area above and around VFCs.
 - 2. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements.
 - 3. Show support locations, type of support, and weight on each support.
 - 4. Indicate field measurements.
- B. Qualification Data: For testing agency.
- C. Product Certificates: For each VFC from manufacturer.
- A. Harmonic Analysis Report: Provide manufacturer's statement of compliance with IEEE 519 and manufacturer's harmonic analysis study and report based upon conditions as described in Section 26 0573 and 260574. These conditions include but are not limited to the POCC, harmonic limits, normal power / emergency power modes, cable length, and transformer / generator data.
- B. Source quality-control reports.
- C. Field quality-control reports.
- D. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - a. Manufacturer's written instructions for testing and adjusting thermal-magnetic circuit breaker and motor-circuit protector trip settings.
 - b. Manufacturer's written instructions for setting field-adjustable overload relays.
 - c. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
 - d. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.
 - e. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate, full-load currents.
 - f. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2923 - 2

1.8 DELIVERY, STORAGE, AND HANDLING

- A. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside controllers and install temporary electric heating, with at least 250 W per controller.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items.

1.9 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. ABB Inc.
 - 2. <u>Danfoss Inc;</u> Danfoss Drives Div.
 - 3. Eaton Electrical Sector; Eaton Corporation; Cutler-Hammer Business Unit.
 - 4. Fuji Electric.
 - 5. <u>Siemens Energy & Automation, Inc</u>.
 - 6. Yaskawa Electric America, Inc.
 - 7. Trane
 - 8. Emerson

2.2 SYSTEM DESCRIPTION

- A. General Requirements for VFCs:
 - 1. VFCs and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508C.
- B. Application: Constant torque and variable torque.
- C. VFC Description: Variable-frequency motor controller, consisting of power converter that employs pulse-width-modulated inverter, factory built and tested in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.
 - 1. Units suitable for operation of NEMA MG 1, Design A and Design B motors, as defined by NEMA MG 1, Section IV, Part 30, "Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both."
 - 2. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
 - 3. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.
- D. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.

26 2923 - 3

- E. Output Rating: Three phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.
- F. Unit Operating Requirements:
 - 1. Input AC Voltage Tolerance: Plus 10 and minus 10 percent of VFC input voltage rating.
 - 2. Input AC Voltage Unbalance: Not exceeding 5 percent.
 - 3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
 - 4. Minimum Efficiency: 96 percent at 60 Hz, full load.
 - 5. Minimum Displacement Primary-Side Power Factor: 96 percent under any load or speed condition.
 - 6. Ambient Temperature Rating: Not less than 32 deg F and not exceeding 104 deg F.
 - 7. Humidity Rating: Less than 95 percent (noncondensing).
 - 8. Altitude Rating: Not exceeding 3300 feet.
 - 9. Vibration Withstand: Comply with NEMA ICS 61800-2.
 - 10. Overload Capability: 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
 - 11. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
 - 12. Speed Regulation: Plus or minus 5 percent.
 - 13. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
 - 14. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.
- G. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.
- H. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.
 - 1. Signal: Electrical.
- I. Internal Adjustability Capabilities:
 - 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 - 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 - 3. Acceleration: 0.1 to 999.9 seconds.
 - 4. Deceleration: 0.1 to 999.9 seconds.
 - 5. Current Limit: 30 to minimum of 150 percent of maximum rating.
- J. Self-Protection and Reliability Features:
 - 1. Surge Suppression: Factory installed as an integral part of the VFC, complying with UL 1449 SPD, Type 1 or Type 2.
 - 2. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
 - 3. Under- and overvoltage trips.
 - 4. Inverter overcurrent trips.
 - 5. VFC and Motor-Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor-overload alarm and trip; settings selectable via the keypad.
 - 6. Critical frequency rejection, with three selectable, adjustable deadbands.
 - 7. Instantaneous line-to-line and line-to-ground overcurrent trips.
 - 8. Loss-of-phase protection.
 - 9. Reverse-phase protection.
 - 10. Short-circuit protection.
 - 11. Motor-overtemperature fault.
- K. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.

26 2923 - 4

- L. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.
- M. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.
- N. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.
- O. Integral Input Disconnecting Means and OCPD: UL 489, molded-case switch, with power fuse block and current-limiting fuses or NEMA KS 1, nonfusible switch, with power fuse block and current-limiting fuses with pad-lockable, door-mounted handle mechanism.
 - 1. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
 - 2. Auxiliary Contacts: NO or NC, arranged to activate before switch blades open.

2.3 CONTROLS AND INDICATION

- A. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English-language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.
 - 1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
 - 2. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.
 - a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.
- B. Historical Logging Information and Displays:
 - 1. Real-time clock with current time and date.
 - 2. Running log of total power versus time.
 - 3. Total run time.
 - 4. Fault log, maintaining last four faults with time and date stamp for each.
- C. Indicating Devices: Digital display and additional readout devices as required, mounted flush in VFC door and connected to display VFC parameters including, but not limited to:
 - 1. Output frequency (Hz).
 - 2. Motor speed (rpm).
 - 3. Motor status (running, stop, fault).
 - 4. Motor current (amperes).
 - 5. Motor torque (percent).
 - 6. Fault or alarming status (code).
 - 7. PID feedback signal (percent).
 - 8. DC-link voltage (V dc).
 - 9. Set point frequency (Hz).
 - 10. Motor output voltage (V ac).
- D. Control Signal Interfaces:
 - 1. Electric Input Signal Interface:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2923 - 5

- a. A minimum of two programmable analog inputs: 0- to 10-V dc, 4- to 20-mA dc, or operator-selectable "x"- to "y"-mA dc.
- b. A minimum of six multifunction programmable digital inputs.
- 2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the BAS or other control systems:
 - a. 0- to 10-V dc.
 - b. 4- to 20-mA dc.
 - c. Potentiometer using up/down digital inputs.
 - d. Fixed frequencies using digital inputs.
- 3. Output Signal Interface: A minimum of one programmable analog output signal(s) (4- to 20-mA dc), which can be configured for any of the following:
 - a. Output frequency (Hz).
 - b. Output current (load).
 - c. DC-link voltage (V dc).
 - d. Motor torque (percent).
 - e. Motor speed (rpm).
 - f. Set point frequency (Hz).
- 4. Remote Indication Interface: A minimum of two programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 - a. Motor running.
 - b. Set point speed reached.
 - c. Fault and warning indication (overtemperature or overcurrent).
 - d. PID high- or low-speed limits reached.
- E. BAS Interface: Factory-installed hardware and software shall interface with BAS to monitor, control, display, and record data for use in processing reports. VFC settings shall be retained within VFC's nonvolatile memory.
 - 1. Communication Interface: Comply with ASHRAE 135. Communication shall interface with BAS to remotely control and monitor lighting from a BAS operator workstation. Control features and monitoring points displayed locally at lighting panel shall be available through the BAS.

2.4 LINE CONDITIONING AND FILTERING

- A. Input Line Conditioning: Based on the manufacturer's harmonic analysis study and report, provide input filtering, as required, to limit total demand (harmonic current) distortion and total harmonic voltage demand at the defined point of common coupling to meet IEEE 519 recommendations.
- B. The VFD shall have internal 5% equivalent impedance to reduce the harmonics to the power line and to add protection from AC line transients. The 5% impedance may be from dual (positive and negative DC bus) reactors, or 5% AC line reactors. VFD's with only one DC reactor shall add an AC line reactor.
- C. Output Filtering: Verify voltage does not exceed motor pulse withstand capability.

2.5 BYPASS SYSTEMS

A. Bypass Operation: Safely transfers motor between power converter output and bypass circuit, manually, automatically, or both. Selector switches set modes and indicator lights indicate mode selected. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.

26 2923 - 6

B. Bypass Mode: Manual operation only; requires local operator selection at VFC. Transfer between power converter and bypass contactor, and retransfer shall only be allowed with the motor at zero speed.

2.6 OPTIONAL FEATURES

- A. Sleep Function: Senses a minimal deviation of a feedback signal and stops the motor. On an increase in speed-command signal deviation, VFC resumes normal operation.
- B. Motor Preheat Function: Preheats motor when idle to prevent moisture accumulation in the motor.
- C. Remote digital operator kit.
- D. Communication Port: RS-232 port, USB 2.0 port, or equivalent connection capable of connecting a printer and a notebook computer.

2.7 ENCLOSURES

- A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.
- B. Plenum Rating: UL 1995; NRTL certification label on enclosure, clearly identifying VFC as "Plenum Rated."

2.8 ACCESSORIES

- A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.
 - 1. Push Buttons: Covered.
 - 2. Pilot Lights: Push to test.
 - 3. Selector Switches: Rotary type.
- B. Control Relays: Auxiliary and adjustable solid-state time-delay relays.
- C. Phase-Failure, Phase-Reversal, and Undervoltage and Overvoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connections. Provide adjustable undervoltage, overvoltage, and time-delay settings.
 - 1. Current Transformers: Continuous current rating, basic impulse insulating level (BIL) rating, burden, and accuracy class suitable for connected circuitry. Comply with IEEE C57.13.
- D. Supplemental Digital Meters:
 - 1. Elapsed-time meter.
 - 2. Kilowatt meter.
 - 3. Kilowatt-hour meter.
- E. Breather and drain assemblies, to maintain interior pressure and release condensation in NEMA 250, Type 4 and Type 4X enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.
- F. Space heaters, with NC auxiliary contacts, to mitigate condensation in NEMA 250, Type 3R and Type 4X enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.
- G. Cooling Fan and Exhaust System: For NEMA 250, Type 1; UL 508 component recognized: Supply fan, with composite intake and exhaust grills; 120-V ac; obtained from integral CPT.

26 2923 - 7

H. Sun shields installed on fronts, sides, and tops of enclosures installed outdoors and subject to direct and extended sun exposure.

2.9 SOURCE QUALITY CONTROL

- A. Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.
 - 1. Test each VFC while connected to a motor that is comparable to that for which the VFC is rated.
 - 2. Verification of Performance: Rate VFCs according to operation of functions and features specified.
- B. VFCs will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance of the Work.
- B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.
- D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Wall-Mounting Controllers: Install with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished floor, unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 26 0529 "Hangers and Supports for Electrical Systems."
- B. Floor-Mounting Controllers: Install VFCs on 4-inch nominal thickness concrete base. Comply with requirements for concrete base specified in Section 03 3000 "Cast-in-Place Concrete."
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

26 2923 - 8

- D. Install fuses in each fusible-switch VFC.
- E. Install fuses in control circuits if not factory installed. Comply with requirements in Section 26 2813 "Fuses."
- F. Install heaters in thermal-overload relays. Select heaters based on actual nameplate full-load amperes after motors are installed.
- G. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.
- H. Comply with NECA 1.
- I. Utilize metal type of conduit (refer to division 26) for line, load and control wiring. Do not mix line, load, and control wiring in the same conduit.

3.3 CONTROL WIRING INSTALLATION

- A. Install wiring between VFCs and remote devices and facility's central-control system. Comply with requirements in Section 26 0519 "Low Voltage Electrical Power Conductors and Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect selector switches and other automatic-control devices where applicable.
 - 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switches are in manual-control position.
 - 2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor-overload protectors.

3.4 IDENTIFICATION

- A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each VFC with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.
- B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Inspect VFC, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2923 - 9

- 2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
- 3. Test continuity of each circuit.
- 4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Architect before starting the motor(s).
- 5. Test each motor for proper phase rotation.
- 6. Perform tests according to the Inspection and Test Procedures for Adjustable Speed Drives stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 8. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. VFCs will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.6 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.7 ADJUSTING

- A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
- B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- C. Adjust the trip settings of instantaneous-only circuit breakers and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to 6 times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed 8 times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Architect before increasing settings.
- D. Set the taps on reduced-voltage autotransformer controllers.
- E. Set field-adjustable circuit-breaker trip ranges
- F. Set field-adjustable pressure switches.

3.8 PROTECTION

- A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.
- B. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2923 - 10

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION

26 2923 - 12

SECTION 23 0529

HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Fastener systems.
 - 4. Equipment supports.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
- 1.3 INFORMATIONAL SUBMITTALS
 - A. Welding certificates.
- 1.4 QUALITY ASSURANCE
 - A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0529 - 1

- 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Copper Pipe Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.4 EQUIPMENT SUPPORTS

- A. Description: Welded, shop- or field-fabricated equipment support made from structural carbonsteel shapes.
- 2.5 MISCELLANEOUS MATERIALS
 - A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
 - B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0529 - 2

hangers.

- 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- D. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- E. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- F. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- G. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- H. Load Distribution: Install hangers and supports so that piping live and dead loads will not be transmitted to connected equipment.
- I. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- J. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-

17-13 OSU, College of Osteopathic Medicine at		HANGERS AND
Cherokee Nation	23 0529 - 3	SUPPORTS FOR HVAC
Childers Architect		PIPING AND EQUIPMENT
07-26-19		

distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0529 - 4

painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

- 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel or corrosion-resistant attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal-hanger shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 - 6. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steelpipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 7. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 - 8. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
 - 9. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0529 - 5

adjustment is not necessary.

- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
 - 8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0529 - 6

- 3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
- P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

SECTION 23 0548

VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Isolation mounts.
 - 3. Restrained elastomeric isolation mounts.
 - 4. Freestanding and restrained spring isolators.
 - 5. Housed spring mounts.
 - 6. Elastomeric hangers.
 - 7. Spring hangers.
 - 8. Spring hangers with vertical-limit stops.
 - 9. Pipe riser resilient supports.
 - 10. Resilient pipe guides.
 - 11. Restraining braces and cables.

1.2 ACTION SUBMITTALS

- A. Product Data: For each product indicated.
- B. Delegated-Design Submittal: For vibration isolation and seismic-restraint calculations and details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For professional engineer.
- B. Welding certificates.
- C. Field quality-control test reports.

1.4 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. <u>Amber/Booth Company, Inc</u>.
 - 2. Kinetics Noise Control.
 - 3. Mason Industries.
 - 4. <u>Vibration Eliminator Co., Inc</u>.
- D. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - 1. Resilient Material: Oil- and water-resistant neoprene, rubber, or hermetically sealed compressed fiberglass.
- E. Mounts: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridgebearing neoprene as defined by AASHTO.
- F. Restrained Mounts: All-directional mountings with seismic restraint.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridgebearing neoprene as defined by AASHTO.
- G. Spring Isolators: Freestanding, laterally stable, open-spring isolators.
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch-thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0548 - 2

- 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- H. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.
 - 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch-thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 - 2. Restraint: Seismic or limit stop as required for equipment and authorities having jurisdiction.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- I. Housed Spring Mounts: Housed spring isolator with integral seismic snubbers.
 - 1. Housing: Ductile-iron or steel housing to provide all-directional seismic restraint.
 - 2. Base: Factory drilled for bolting to structure.
 - 3. Snubbers: Vertically adjustable to allow a maximum of 1/4-inch travel up or down before contacting a resilient collar.
- J. Elastomeric Hangers: Single or double-deflection type, fitted with molded, oil-resistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.
- K. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 - 7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.
- L. Spring Hangers with Vertical-Limit Stop: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression and with a vertical-limit stop.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0548 - 3

- 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
- 7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
- 8. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.
- M. Pipe Riser Resilient Support: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch-thick neoprene. Include steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig and for equal resistance in all directions.
- N. Resilient Pipe Guides: Telescopic arrangement of 2 steel tubes or post and sleeve arrangement separated by a minimum of 1/2-inch-thick neoprene. Where clearances are not readily visible, a factory-set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction shall be fitted. Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.2 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Comply with requirements in Section 07 7200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- B. Install cables so they do not bend across edges of adjacent equipment or building structure.
- C. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- D. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- E. Drilled-in Anchors:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0548 - 4

- 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
 - 6. Measure isolator restraint clearance.
 - 7. Measure isolator deflection.
 - 8. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Adjust active height of spring isolators.
- D. Adjust restraints to permit free movement of equipment within normal mode of operation.

23 0548 - 5

3.5 HVAC VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE SCHEDULE

A. Supported or Suspended Equipment: Refer to drawings for equipment vibration isolators.

END OF SECTION

SECTION 23 0553

IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Duct labels.
 - 5. Valve tags.

1.2 ACTION SUBMITTAL

- A. Product Data: For each type of product indicated.
- B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: White.
 - 3. Background Color: Black.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the

17-13 OSU, College of Osteopathic Medicine atIDENTIFICATION FORCherokee Nation23 0553 - 1HVAC PIPING ANDChilders ArchitectEQUIPMENT07-26-1907

Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Black.
- C. Background Color: Yellow.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

23 0553 - 2

2.4 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2inch numbers.
 - 1. Tag Material: Brass, 0.032-inch Stainless steel, 0.025-inch Aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

23 0553 - 3

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

END OF SECTION

SECTION 23 0593

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.
 - 2. Balancing Hydronic Piping Systems:
 - a. Constant-flow hydronic systems.
 - b. Variable-flow hydronic systems.

1.2 **DEFINITIONS**

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.3 INFORMATIONAL SUBMITTALS

- A. Strategies and Procedures Plan: Within 60 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article.
- B. Certified TAB reports.

1.4 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage an Independent TAB entity certified by AABC, NEBB, or TABB.
- B. Certify TAB field data reports and perform the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- C. TAB Report Forms: Use standard TAB contractor's forms approved by Architect.

17-13 OSU, College of Osteopathic Medicine at		TESTING, ADJUSTING,
Cherokee Nation	23 0593 - 1	AND BALANCING FOR
Childers Architect		HVAC
07-26-19		

- D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."
- E. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2007, Section 7.2.2 "Air Balancing."
- F. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2007, Section 6.7.2.3 "System Balancing."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Section 23 3113 "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

J. Examine terminal units, such as variable-ai	r-volume boxes, and	verify that they are accessible
17-13 OSU, College of Osteopathic Medicine at		TESTING, ADJUSTING,
Cherokee Nation	23 0593 - 2	AND BALANCING FOR
Childers Architect		HVAC
07-26-19		

and their controls are connected and functioning.

- K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.
- P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.
 - 1. Comply with requirements in ASHRAE 62.1-2007, Section 7.2.2 "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 23 0713 "Duct Insulation," Section 23 0716 "HVAC Equipment Insulation," Section 23 0719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other

17-13 OSU, College of Osteopathic Medicine atTESTING, ADJUSTING,Cherokee Nation23 0593 - 3AND BALANCING FORChilders ArchitectHVAC07-26-19

suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaustair dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 23 3113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0593 - 4

- 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
- 4. Measure static pressures entering and leaving other devices, such as sound traps, heatrecovery equipment, and air washers, under final balanced conditions.
- 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
- 6. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fanmotor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the remainder at maximum airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.

- B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set outdoor-air dampers at minimum, and set return- and exhaust-air dampers at a position that simulates full-cooling load.
 - 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
 - 3. Measure total system airflow. Adjust to within indicated airflow.
 - 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 - 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 - a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
 - 6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
 - 7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
 - 8. Record final fan-performance data.
- C. Pressure-Dependent, Variable-Air-Volume Systems without Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Balance variable-air-volume systems the same as described for constant-volume air systems.
 - 2. Set terminal units and supply fan at full-airflow condition.
 - 3. Adjust inlet dampers of each terminal unit to indicated airflow and verify operation of the static-pressure controller. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 - 4. Readjust fan airflow for final maximum readings.
 - 5. Measure operating static pressure at the sensor that controls the supply fan if one is installed, and verify operation of the static-pressure controller.
 - 6. Set supply fan at minimum airflow if minimum airflow is indicated. Measure static pressure to verify that it is being maintained by the controller.
 - 7. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 - a. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.

8. Measure the return airflow to the fan while operating at maximum return airflow and

17-13 OSU, College of Osteopathic Medicine at		TESTING, ADJUSTING,
Cherokee Nation	23 0593 - 6	AND BALANCING FOR
Childers Architect		HVAC
07-26-19		

minimum outdoor airflow.

- a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
- D. Pressure-Dependent, Variable-Air-Volume Systems with Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set system at maximum indicated airflow by setting the required number of terminal units at minimum airflow. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
 - 2. Adjust supply fan to maximum indicated airflow with the variable-airflow controller set at maximum airflow.
 - 3. Set terminal units at full-airflow condition.
 - 4. Adjust terminal units starting at the supply-fan end of the system and continuing progressively to the end of the system. Adjust inlet dampers of each terminal unit to indicated airflow. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 - 5. Adjust terminal units for minimum airflow.
 - 6. Measure static pressure at the sensor.
 - 7. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check liquid level in expansion tank.
 - 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 - 6. Set system controls so automatic valves are wide open to heat exchangers.
 - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

- A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:
 - 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0593 - 7

and verify that the pump has the intended impeller size.

- a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Architect and comply with requirements in Section 23 2123 "Hydronic Pumps."
- 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 - a. Monitor motor performance during procedures and do not operate motors in overload conditions.
- 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
- 4. Report flow rates that are not within plus or minus 10 percent of design.
- B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.
- C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.
- D. Set calibrated balancing valves, if installed, at calculated presettings.
- E. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 - 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.
- F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 - 1. Determine the balancing station with the highest percentage over indicated flow.
 - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 - 3. Record settings and mark balancing devices.
- H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
- I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.
- J. Check settings and operation of each safety valve. Record settings.

3.9 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

23 0593 - 8

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

3.10 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.11 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record compressor data.

3.12 PROCEDURES FOR CHILLERS AND BOILERS

A. Measure and record entering- and leaving-water temperatures and water flow.

3.13 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Measure, adjust, and record the following data for each water coil:
 - 1. Entering- and leaving-water temperature.
 - 2. Water flow rate.
 - 3. Water pressure drop.
 - 4. Dry-bulb temperature of entering and leaving air.
 - 5. Wet-bulb temperature of entering and leaving air for cooling coils.
 - 6. Airflow.
 - 7. Air pressure drop.
- B. Measure, adjust, and record the following data for each electric heating coil:
 - 1. Nameplate data.
 - 2. Airflow.
 - 3. Entering- and leaving-air temperature at full load.
 - 4. Voltage and amperage input of each phase at full load and at each incremental stage.
 - 5. Calculated kilowatt at full load.
 - 6. Fuse or circuit-breaker rating for overload protection.
- C. Measure, adjust, and record the following data for each steam coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Airflow.
 - 3. Air pressure drop.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0593 - 9

- 4. Inlet steam pressure.
- D. Measure, adjust, and record the following data for each refrigerant coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - 3. Airflow.
 - 4. Air pressure drop.
 - 5. Refrigerant suction pressure and temperature.

3.14 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets:
 - a. General Rooms: Plus or minus 10 percent.
 - b. Negative Rooms: Laboratories, Chemical Storage, Bio Hazard, Soiled Rooms, Isolation Rooms, Decontamination, Anesthesia Workroom, Medical and Dental Gas Storage:
 - 1) Outlets: Plus 0 percent, minus 10 percent.
 - 2) Inlets: Plus 10 percent, minus 0 percent.
 - c. Positive Rooms: Clean Workrooms, Clean Utility, Dispensing Workroom, IV Workroom, Sterile Supply and Storage, Procedure Rooms, Dental Workroom Sterile:
 - 1) Outlets: Plus 10 percent, minus 0 percent.
 - 2) Inlets: Plus 0 percent, minus 10 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 - 4. Cooling-Water Flow Rate: Plus or minus 10 percent.

3.15 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare monthly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.16 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation23 0593 - 10Childers Architect07-26-19

- 1. Pump curves.
- 2. Fan curves.
- 3. Manufacturers' test data.
- 4. Field test reports prepared by system and equipment installers.
- 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.

3.17 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0593 - 11

being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION

SECTION 23 0713

DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 7. Outdoor, concealed supply and return.
 - 8. Outdoor, exposed supply and return.
- B. Related Sections:
 - 1. Section 23 0719 "HVAC Piping Insulation."
 - 2. Section 23 3113 "Metal Ducts" for duct liners.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 - 3. Detail application of field-applied jackets.
 - 4. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

23 0713 - 1

- 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
- 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type II with factory-applied vinyl jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>CertainTeed Corp.; SoftTouch Duct Wrap</u>.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. <u>Owens Corning; SOFTR All-Service Duct Wrap</u>.
- G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation without factory-applied jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>CertainTeed Corp.; Commercial Board</u>.
 - b. Johns Manville; 800 Series Spin-Glas.
 - c. Knauf Insulation; Insulation Board.
 - d. <u>Owens Corning; Fiberglas 700 Series</u>.

DUCT INSULATION

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-127</u>.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; 85-60/85-70</u>.
 - d. Mon-Eco Industries, Inc.; 22-25.
- C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-82</u>.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; 85-50</u>.
 - d. Mon-Eco Industries, Inc.; 22-25.
- D. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Dow Corning Corporation; 739, Dow Silicone</u>.
 - b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. <u>Speedline Corporation; Polyco VP Adhesive</u>.

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

DUCT INSULATION

- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; 30-80/30-90</u>.
 - b. <u>Vimasco Corporation; 749</u>.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-10</u>.
 - b. Eagle Bridges Marathon Industries; 550.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; 46-50</u>.
 - d. Mon-Eco Industries, Inc.; 55-50.
 - e. <u>Vimasco Corporation; WC-1/WC-5</u>.
 - 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: 60 percent by volume and 66 percent by weight.
 - 5. Color: White.

2.4 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-76</u>.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; 95-44</u>.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0713 - 4

DUCT INSULATION

- 4. Service Temperature Range: Minus 40 to plus 250 deg F.
- 5. Color: Aluminum.
- B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-76</u>.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
 - 5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.6 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. <u>Proto Corporation; LoSmoke</u>.
 - d. <u>Speedline Corporation; SmokeSafe</u>.
 - 2. Adhesive: As recommended by jacket material manufacturer.

- 3. Color: Color-code jackets based on system. Color as selected by Architect].
- D. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; Metal Jacketing Systems</u>.
 - b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 - c. <u>RPR Products, Inc.; Insul-Mate</u>.
 - 2. Sheet and roll stock ready for shop or field sizing.
 - 3. Finish and thickness are indicated in field-applied jacket schedules.
 - 4. Moisture Barrier for Indoor Applications: 1-mil-thick, heat-bonded polyethylene and kraft paper.
 - 5. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.

2.7 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. <u>Compac Corporation; 104 and 105</u>.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>ABI, Ideal Tape Division; 488 AWF</u>.
 - b. <u>Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800</u>.
 - c. <u>Compac Corporation; 120</u>.
 - d. Venture Tape; 3520 CW.

23 0713 - 6

- 2. Width: 2 inches.
- 3. Thickness: 3.7 mils.
- 4. Adhesion: 100 ounces force/inch in width.
- 5. Elongation: 5 percent.
- 6. Tensile Strength: 34 lbf/inch in width.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:

- 1. Draw jacket tight and smooth.
- 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 - 1. Comply with requirements in Section 07 8413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- E. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 8413 "Penetration Firestopping."

3.4 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface.

Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
 - 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.5 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.6 FINISHES

- A. Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 9113 "Exterior Painting" and Section 09 9123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

23 0713 - 11

3.8 DUCT INSULATION SCHEDULE, GENERAL

- A. Refer to schedules on drawings for material and thickness application to duct systems.
- B. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 7. Outdoor, concealed supply and return.
 - 8. Outdoor, exposed supply and return.
- C. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1-2007.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Flexible connectors.
 - 6. Vibration-control devices.
 - 7. Factory-insulated access panels and doors.

END OF SECTION

SECTION 23 0716

HVAC EQUIPMENT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following HVAC equipment that is not factory insulated:
 - 1. Chilled-water pumps.
 - 2. Heating, hot-water pumps.
 - 3. Expansion/compression tanks.
 - 4. Air separators.
- B. Related Sections:
 - 1. Section 23 0713 "Duct Insulation."
 - 2. Section 23 0719 "HVAC Piping Insulation."

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail removable insulation at equipment connections.
 - 4. Detail application of field-applied jackets.
 - 5. Detail application at linkages of control devices.
 - 6. Detail field application for each equipment type.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- E. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Pittsburgh Corning Corporation; Foamglas</u>.
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Board Insulation: ASTM C 552, Type IV.
 - 5. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Aeroflex USA, Inc.; Aerocel</u>.
 - b. <u>Armacell LLC; AP Armaflex</u>.
 - c. K-Flex USA; Insul-Sheet and K-FLEX LS.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>CertainTeed Corp.; SoftTouch Duct Wrap</u>.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. <u>Manson Insulation Inc.; Alley Wrap</u>.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
- H. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x

23 0716 - 2

deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

- 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>CertainTeed Corp.; CrimpWrap</u>.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Manson Insulation Inc.; AK Flex.
 - e. <u>Owens Corning; Fiberglas Pipe and Tank Insulation</u>.
 - f.

.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; 81-84</u>.
- C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Aeroflex USA, Inc.; Aeroseal</u>.
 - b. Armacell LLC; Armaflex 520 Adhesive.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
 - d. K-Flex USA; R-373 Contact Adhesive.
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-127</u>.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; 85-60/85-70</u>.
 - d. Mon-Eco Industries, Inc.; 22-25.
- E. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-82</u>.

23 0716 - 3

- b. Eagle Bridges Marathon Industries; 225.
- c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
- d. Mon-Eco Industries, Inc.; 22-25.
- F. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Dow Corning Corporation; 739, Dow Silicone</u>.
 - b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. <u>Speedline Corporation; Polyco VP Adhesive</u>.

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H .B. Fuller</u> <u>Company; 30-80/30-90</u>.
 - b. <u>Vimasco Corporation; 749</u>.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; CP-10</u>.
 - b. Eagle Bridges Marathon Industries; 550.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company: 46-50.
 - d. Mon-Eco Industries, Inc.; 55-50.
 - e. <u>Vimasco Corporation; WC-1/WC-5</u>.
 - 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: 60 percent by volume and 66 percent by weight.
 - 5. Color: White.

2.4 **SEALANTS**

- Α. Joint Sealants:
 - Joint Sealants for Cellular-Glass Products: Subject to compliance with requirements, 1. provide one of the following:
 - Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller a. Company; CP-76.
 - Eagle Bridges Marathon Industries; 405. b.
 - Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller C. Company; 30-45.
 - d Mon-Eco Industries, Inc.; 44-05.
 - Pittsburgh Corning Corporation; Pittseal 444. e.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - Permanently flexible, elastomeric sealant. 3.
 - Service Temperature Range: Minus 100 to plus 300 deg F. 4.
 - Color: White or gray. 5.
- Β. FSK and Metal Jacket Flashing Sealants:
 - Products: Subject to compliance with requirements, provide one of the following: 1.
 - Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller a. Company; CP-76.
 - b.
 - Eagle Bridges Marathon Industries; 405. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller c. Company: 95-44.
 - Mon-Eco Industries, Inc.; 44-05. d.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - Service Temperature Range: Minus 40 to plus 250 deg F. 4.
 - Color: Aluminum. 5.
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - Products: Subject to compliance with requirements, available products that may be 1. incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - Fire- and water-resistant, flexible, elastomeric sealant. 3.
 - Service Temperature Range: Minus 40 to plus 250 deg F. 4.
 - Color: White. 5.

2.5 **FACTORY-APPLIED JACKETS**

Insulation system schedules indicate factory-applied jackets on various applications. When Α. factory-applied jackets are indicated, comply with the following:

23 0716 - 5

- 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
- 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
- 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
- 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.

2.6 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Zeston.
 - b. <u>P.I.C. Plastics, Inc.; FG Series</u>.
 - c. <u>Proto Corporation; LoSmoke</u>.
 - d. <u>Speedline Corporation; SmokeSafe</u>.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated tank heads and tank side panels.
- D. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> <u>Company; Metal Jacketing Systems</u>.
 - b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 - c. <u>RPR Products, Inc.; Insul-Mate</u>.
 - 2. Finish and thickness are indicated in field-applied jacket schedules.
 - 3. Moisture Barrier for Indoor Applications: 1-mil-thick, heat-bonded polyethylene and kraft paper.
 - 4. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 - 5. Factory-Fabricated Fitting Covers:
 - a. Same material, finish, and thickness as jacket.
 - b. Preformed two-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - c. Tee covers.
 - d. Flange and union covers.
 - e. End caps.
 - f. Beveled collars.
 - g. Valve covers.
 - h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

- E. Self-Adhesive Outdoor Jacket: 60-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Polyguard Products, Inc.; Alumaguard 60.

2.7 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. <Insert manufacturer's name; product name or designation>.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>ABI, Ideal Tape Division; 491 AWF FSK</u>.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. <u>Compac Corporation; 110 and 111</u>.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>ABI, Ideal Tape Division; 370 White PVC tape</u>.
 - b. <u>Compac Corporation; 130</u>.
 - c. Venture Tape; 1506 CW NS.

- 2. Width: 2 inches.
- 3. Thickness: 6 mils.
- 4. Adhesion: 64 ounces force/inch in width.
- 5. Elongation: 500 percent.
- 6. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
 - a. <u>ABI, Ideal Tape Division; 488 AWF</u>.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - c. <u>Compac Corporation; 120</u>.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.

2.8 SECUREMENTS

- A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
 - 1. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. <u>ITW Insulation Systems; Gerrard Strapping and Seals</u>.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
- B. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 - a. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 - 2) GEMCO; Perforated Base.
 - 3) <u>Midwest Fasteners, Inc.; Spindle</u>.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Aluminum, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

- 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. <u>Products</u>: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) <u>GEMCO; R-150</u>.
 - 3) <u>Midwest Fasteners, Inc.; WA-150</u>.
 - 4) <u>Nelson Stud Welding; Speed Clips</u>.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

2.9 CORNER ANGLES

- A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

23 0716 - 9

- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- O. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0716 - 10

- 4. Manholes.
- 5. Handholes.
- 6. Cleanouts.

3.3 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

- A. Mineral-Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of tank and vessel surfaces.
 - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 - 3. Protect exposed corners with secured corner angles.
 - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 - d. Do not overcompress insulation during installation.
 - e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 - f. Impale insulation over anchor pins and attach speed washers.
 - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
 - 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
 - 7. Stagger joints between insulation layers at least 3 inches.
 - 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
 - 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
 - 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
- B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.

- 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
- 2. Seal longitudinal seams and end joints.
- C. Insulation Installation on Pumps:
 - 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch-diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
 - 2. Fabricate boxes from galvanized steel, at least 0.040 inch thick.
 - 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.4 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.5 FINISHES

- A. Equipment Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 9113 "Exterior Painting" and Section 09 9123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections: Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.7 EQUIPMENT INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
- B. Insulate indoor and outdoor equipment that is not factory insulated.
- C. Chilled-water pump insulation shall be one of the following:
 - 1. Cellular Glass: 3 inches thick.
 - 2. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.
- D. Heating-Hot-Water Pump Insulation: Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.
- E. Chilled-water expansion/compression tank insulation shall be one of the following:
 - 1. Cellular Glass: 1-1/2 inches thick.
 - 2. Flexible Elastomeric: 1 inch thick.
 - 3. Mineral-Fiber Pipe and Tank: 1 inch thick.
- F. Heating-Hot-Water Expansion/Compression Tank Insulation: Mineral-Fiber Pipe and Tank: 1 inch thick.
- G. Chilled-water air-separator insulation shall be one of the following:
 - 1. Cellular Glass: 2 inches thick.
 - 2. Flexible Elastomeric: 1 inch thick.
 - 3. Mineral-Fiber Pipe and Tank: 1 inch thick.
- H. Heating-Hot-Water Air-Separator Insulation: Mineral-Fiber Pipe and Tank: 2 inches thick.

3.8 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Equipment, Concealed:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 0716 - 13

- 1. None.
- D. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:
 1. PVC: 20 mils thick.

END OF SECTION

SECTION 23 2300

REFRIGERANT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.2 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-134a:
 - 1. Suction Lines for Air-Conditioning Applications: 115 psig.
 - 2. Suction Lines for Heat-Pump Applications: 225 psig.
 - 3. Hot-Gas and Liquid Lines: 225 psig.
- B. Line Test Pressure for Refrigerant R-407C:
 - 1. Suction Lines for Air-Conditioning Applications: 230 psig.
 - 2. Suction Lines for Heat-Pump Applications: 380 psig.
 - 3. Hot-Gas and Liquid Lines: 380 psig.
- C. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig.
 - 2. Suction Lines for Heat-Pump Applications: 535 psig.
 - 3. Hot-Gas and Liquid Lines: 535 psig.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop based on manufacturer's test data.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 - 1. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

- A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.7 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 280, Type ACR.
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.
- D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
- E. Brazing Filler Metals: AWS A5.8.
- F. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
 - 4. Pressure Rating: Factory test at minimum 500 psig.
 - 5. Maximum Operating Temperature: 250 deg F.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Hot-Gas and Liquid Lines, and Suction Lines: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 2300 - 2

REFRIGERANT PIPING

- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- K. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 08 3113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- L. Install refrigerant piping in protective conduit where installed belowground.
- M. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- N. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- O. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- P. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- Q. Identify refrigerant piping and valves according to Section 23 0553 "Identification for HVAC Piping and Equipment."
- R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 0517 "Sleeves and Sleeve Seals for HVAC Piping."
- S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 23 0517 "Sleeves and Sleeve Seals for HVAC Piping."
- T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 0518 "Escutcheons for HVAC Piping."

3.3 PIPE JOINT CONSTRUCTION

- A. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- B. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Section 23 0529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 - 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 - 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
 - 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 7. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 8. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 - 9. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.
- D. Support multifloor vertical runs at least at each floor.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.

23 2300 - 4

- 2. Test refrigerant piping and specialties. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
- 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.6 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 - 4. Charge system with a new filter-dryer core in charging line.

3.7 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION

23 2300 - 6

REFRIGERANT PIPING

SECTION 23 3113

METAL DUCTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Rectangular ducts and fittings.
 - 2. Round ducts and fittings.
 - 3. Sheet metal materials.
 - 4. Duct liner.
 - 5. Sealants and gaskets.
 - 6. Hangers and supports.
- B. Related Sections:
 - 1. Section 23 0593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Section 23 3300 "Air Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.

1.2 PERFORMANCE REQUIREMENTS

- A. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2007.
- 1.3 ACTION SUBMITTALS
 - A. Product Data: For each type of product indicated.
 - B. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.
 - 3. Duct layout indicating sizes, configuration, and static-pressure classes.
 - 4. Elevation of top of ducts.
 - 5. Dimensions of main duct runs from building grid lines.
 - 6. Fittings.
 - 7. Reinforcement and spacing.
 - 8. Seam and joint construction.
 - 9. Penetrations through fire-rated and other partitions.
 - 10. Equipment installation based on equipment being used on Project.
 - 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 - 12. Hangers and supports, including methods for duct and building attachment and vibration isolation.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2007, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
- B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2007, Section 6.4.4 "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 ROUND AND FLAT OVAL DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Lindab Inc.
 - b. <u>McGill AirFlow LLC</u>.
 - c. <u>SEMCO Incorporated</u>.
 - d. <u>Sheet Metal Connectors, Inc</u>.
 - e. <u>Spiral Manufacturing Co., Inc</u>.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fabricate round ducts larger Than 90 inches in diameter with butt-welded longitudinal seams.
- D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 DOUBLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- 1. Lindab Inc.
- 2. McGill AirFlow LLC.
- 3. <u>SEMCO Incorporated</u>.
- 4. <u>Sheet Metal Connectors, Inc.</u>
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.
- C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
 - 1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
 - 2. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - b. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with buttwelded longitudinal seams.
 - 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- D. Inner Duct: Minimum 0.028-inch perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.
- E. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.

2.4 SHEET METAL MATERIALS

General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards
 Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

23 3113 - 4

- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- E. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- F. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.5 DUCT LINER

- A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. <u>CertainTeed Corporation; Insulation Group</u>.
 - b. Johns Manville.
 - c. Knauf Insulation.
 - d. Owens Corning.
 - 2. Maximum Thermal Conductivity:
 - a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 4. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
- B. Insulation Pins and Washers:
 - 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

23 3113 - 5

- 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."
 - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 - 3. Butt transverse joints without gaps, and coat joint with adhesive.
 - 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure buttededge overlapping.
 - 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 - 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
 - 7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
 - 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.
 - c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
 - 9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 - a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
 - 10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.6 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.

- 5. Mold and mildew resistant.
- 6. VOC: Maximum 75 g/L (less water).
- 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
- 8. Service: Indoor or outdoor.
- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- C. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- E. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.7 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

23 3113 - 7

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 23 3300 "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."
- M. In congested areas (with respect to other building components / services), coordinate the installed duct connection to its air device so as to provide the designed air flow without any restrictions.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.
- 3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT
 - A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease, and sloped a minimum of 2 percent to drain grease back to the hood.
 - B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 20 feet in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches from bottom of duct.
 - C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.

- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 23 3300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 START UP

A. Air Balance: Comply with requirements in Section 23 0593 "Testing, Adjusting, and Balancing for HVAC."

3.8 DUCT CLEANING

- A. Clean new duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 23 3300 "Air Duct Accessories" for access panels and doors.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 - 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems

3.9 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated.
- B. Supply Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Constant-Volume Air-Handling Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 - a. Pressure Class: Positive 6-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
 - 4. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive 4-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- C. Return Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A .
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 4-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.

23 3113 - 11

- D. Exhaust Ducts:
 - 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1-2007, Class 1 and 2) Air:
 - a. Pressure Class: Negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 3. Ducts Connected to Commercial Kitchen Hoods: Comply with NFPA 96.
 - a. Exposed to View: Type 304, stainless-steel sheet, No. 4 finish.
 - b. Concealed: Carbon-steel sheet.
 - c. Welded seams and joints.
 - d. Pressure Class: Positive or negative 4-inch wg.
 - e. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - f. SMACNA Leakage Class: 3.
 - 4. Ducts Connected to Dishwasher Hoods:
 - a. Type 304, stainless-steel sheet.
 - b. Exposed to View: No. 4 finish.
 - c. Concealed: No. 2D finish.
 - d. Welded seams and flanged joints with watertight EPDM gaskets.
 - e. Pressure Class: Positive or negative 3-inch wg.
 - f. Minimum SMACNA Seal Class: Welded
- E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.

- d. SMACNA Leakage Class for Round and Flat Oval: 3.
- F. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Galvanized.
 - 3. Aluminum Ducts: Aluminum.
- G. Liner:
 - 1. Supply Air Ducts: Fibrous glass, Type I, 1 inch thick, only where noted otherwise on drawings.
 - 2. Return Air Ducts: Fibrous glass, Type I, 1 inch thick, only where noted otherwise on drawings.
- H. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 - 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Welded.
- I. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - 2. Round: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.

- a. Velocity 1000 fpm or Lower: 90-degree tap.
- b. Velocity 1000 to 1500 fpm: Conical tap.
- c. Velocity 1500 fpm or Higher: 45-degree lateral.

3.10 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Test the following systems:
 - a. Supply Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.
 - 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 4. Test for leaks before applying external insulation.
 - 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 - 6. Give seven days advance notice for testing.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION

SECTION 23 3300

AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

- Α. Section Includes:
 - Backdraft and pressure relief dampers. 1.
 - Manual volume dampers. 2.
 - 3. Control dampers.
 - Fire dampers. 4.
 - Smoke dampers. 5.
 - 6. Flange connectors.
 - 7. Turning vanes.
 - Duct-mounted access doors. 8.
 - Flexible connectors. 9.
 - 10. Flexible ducts.
 - Duct accessory hardware. 11.
- Β. **Related Requirements:**
 - Section 28 3111 "Digital, Addressable Fire-Alarm System" for duct-mounted fire and 1. smoke detectors.

1.2 **ACTION SUBMITTALS**

- Α. Product Data: For each type of product.
- Β. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - Detail duct accessories fabrication and installation in ducts and other construction. 1. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - Manual volume damper installations. b.
 - Control-damper installations. C.
 - Fire-damper and smoke-damper installations, including sleeves; and duct-mounted d. access doors.
 - Wiring Diagrams: For power, signal, and control wiring. e.

1.3 **CLOSEOUT SUBMITTALS**

Α. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 **ASSEMBLY DESCRIPTION**

Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with Α. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."

AIR DUCT ACCESSORIES

Β. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- Α. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - Galvanized Coating Designation: G60. 1.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish Β. for concealed ducts and finish for exposed ducts.
- Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for C. concealed ducts and standard, 1-side bright finish for exposed ducts.
- D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
- E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- Basis-of-Design Product: Subject to compliance with requirements, provide product indicated Α. on Drawings or comparable product by one of the following:
 - Greenheck Fan Corporation. 1.
 - Nailor Industries Inc. 2.
 - 3. Ruskin Company.
 - 4. Vent Products Company, Inc.
 - 5. United Enertech
 - 6. Dace
- Β. Description: Gravity balanced.
- C. Maximum Air Velocity: 2000 fpm.
- D. Maximum System Pressure: 2-inch wg.
- E. Frame: Hat-shaped, 0.05-inch-thick, galvanized sheet steel, with welded corners or mechanically attached and mounting flange.
- F. Blades: Multiple single-piece blades, center pivoted, maximum 6-inch width, 0.025-inch-thick, roll-formed aluminum with sealed edges.
- G. Blade Action: Parallel.
- Blade Seals: Felt. H.
- I. Blade Axles:
 - Material: Nonferrous metal. 1.
 - 2. Diameter: 0.20 inch.

17-13 OSU, College of Osteopathic Medicine at **Cherokee Nation** Childers Architect 07-26-19

AIR DUCT ACCESSORIES

- J. Tie Bars and Brackets: Galvanized steel.
- K. Return Spring: Adjustable tension.
- L. Bearings: Steel ball or synthetic pivot bushings.
- M. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Screen Mounting: Rear mounted.
 - 4. Screen Material: Galvanized steel.
 - 5. Screen Type: Insect.
 - 6. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Greenheck Fan Corporation.
 - b. McGill AirFlow LLC.
 - c. Nailor Industries Inc.
 - d. Ruskin Company.
 - e. Vent Products Company, Inc.
 - f. United Enertech
 - g. Dace
 - h. Carnes
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized-steel, 0.064 inch thick.
 - 6. Blade Axles: Galvanized steel.
 - 7. Bearings:
 - a. Oil-impregnated bronze.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 8. Tie Bars and Brackets: Galvanized steel.
- B. Jackshaft:
 - 1. Size: 1-inch diameter.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- C. Damper Hardware:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 AIR DUCT ACCESSORIES

- 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch-thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
- Include center hole to suit damper operating-rod size. 2.
- 3. Include elevated platform for insulated duct mounting.

2.5 **CONTROL DAMPERS**

- Α. Manufacturers: Subject to compliance with requirements, provide products by one of the followina:
 - 1. Arrow United Industries; a division of Mestek, Inc.
 - 2. Carnes.
 - 3. Greenheck Fan Corporation.
 - McGill AirFlow LLC. 4.
 - Metal Form Manufacturing, Inc. 5.
 - Nailor Industries Inc. 6.
 - 7. Ruskin Company.
 - Vent Products Company, Inc. 8.
 - Young Regulator Company. 9.
- Β. Frames:
 - 1. Hat shaped.
 - 2. 0.094-inch-thick, galvanized sheet steel.
 - 3. Mitered and welded corners.
- C. Blades:
 - Multiple blade with maximum blade width of 8 inches. 1
 - Parallel- and opposed-blade design. 2.
 - Galvanized-steel. 3.
 - 0.064 inch thick single skin. 4.
 - Blade Edging: Closed-cell neoprene. 5.
- D. Blade Axles: 1/2-inch-diameter; stainless steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 - Operating Temperature Range: From minus 40 to plus 200 deg F. 1.
- Bearings: E.
 - Oil-impregnated bronze, molded synthetic or stainless-steel sleeve. 1.
 - Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of 2. damper blades and bearings at both ends of operating shaft.
 - 3. Thrust bearings at each end of every blade.

FIRE DAMPERS 2.6

- Manufacturers: Subject to compliance with requirements, provide products by one of the Α. followina:
 - Arrow United Industries; a division of Mestek, Inc. 1.
 - 2. Carnes.
 - 3 Greenheck Fan Corporation.
 - 4. Nailor Industries Inc.
 - Prefco: Perfect Air Control, Inc. 5.
 - Ruskin Company. 6.
 - 7. Vent Products Company, Inc.
- В. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.
- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

AIR DUCT ACCESSORIES

- D. Fire Rating: 1-1/2 and 3 hours.
- E. Frame: Fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - Minimum Thickness: 0.05 thick, as indicated, and of length to suit application. 1.
 - Omit sleeve where damper-frame width permits direct attachment of 2. Exception: perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- Η. Blades: Roll-formed, interlocking, 0.034-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.
- I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- J. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links.

2.7 SMOKE DAMPERS

- Α. Manufacturers: Subject to compliance with requirements, provide products by one of the following :
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Carnes.
 - 3. Greenheck Fan Corporation.
 - Nailor Industries Inc. 4.
 - 5. Ruskin Company.
- В. General Requirements: Label according to UL 555S by an NRTL.
- C. Smoke Detector: Provided by fire alarm contractor.
- D. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel, with welded or corners and mounting flange.
- E. Blades: Roll-formed, horizontal, interlocking, 0.034-inch-thick, galvanized sheet steel.
- F. Leakage: Class I.
- G. Rated pressure and velocity to exceed design airflow conditions.
- Mounting Sleeve: Factory-installed, 0.05-inch-thick, galvanized sheet steel; length to suit wall Η. or floor application.
- Damper Motors: Modulating or two-position action. Ι.
- J. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 0513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

- Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 23 0900 "Instrumentation and Control for HVAC."
- 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
- 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
- 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
- 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.

K. Accessories:

- 1. Auxiliary switches for signaling fan control or position indication.
- 2. Test and reset switches, damper mounted.

2.8 FLANGE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Nexus PDQ; Division of Shilco Holdings Inc.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gage and Shape: Match connecting ductwork.

2.9 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. METALAIRE, Inc.
 - 4. SEMCO Incorporated.
 - 5. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- D. Vane Construction: Single wall for ducts up to 48 inches and double wall.for larger dimensions.

23 3300 - 6

2.10 DUCT-MOUNTED ACCESS DOORS

- Α. Manufacturers: Subject to compliance with requirements, provide products by one of the followina:
 - American Warming and Ventilating; a division of Mestek, Inc. 1.
 - Cesco Products; a division of Mestek, Inc. 2.
 - 3. Ductmate Industries. Inc.
 - Flexmaster U.S.A., Inc. 4.
 - Greenheck Fan Corporation. 5.
 - McGill AirFlow LLC. 6.
 - Nailor Industries Inc. 7.
 - Ventfabrics. Inc. 8.
 - Ward Industries, Inc.; a division of Hart & Cooley, Inc. 9.
- Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Β. Construction Standards - Metal and Flexible"; Figures 7-2, "Duct Access Doors and Panels," and 7-3, "Access Doors - Round Duct."
 - Door: 1.
 - a. Double wall, rectangular.
 - Galvanized sheet metal with insulation fill and thickness as indicated for duct b. pressure class.
 - c. Vision panel.
 - Hinges and Latches: 1-by-1-inchbutt or piano hinge and cam latches. d.
 - Fabricate doors airtight and suitable for duct pressure class. е
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - Access Doors Less Than 12 Inches Square: No hinges and two sash locks. а
 - Access Doors up to 18 Inches Square: Two hinges and two sash locks. b.
 - Access Doors up to 24 by 48 Inches: Continuous and two compression latches. c.
 - Access Doors Larger Than 24 by 48 Inches: Continuous and two compression d. latches with outside and inside handles.
- C. Pressure Relief Access Door:
 - 1. Door and Frame Material: Galvanized sheet steel.
 - Door: Double wall with insulation fill with metal thickness applicable for duct pressure 2. class.
 - 3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
 - 4. Factory set at 3.0- to 8.0-inch wg.
 - Doors close when pressures are within set-point range. 5.
 - Hinge: Continuous piano. 6.
 - Latches: Cam. 7.
 - Seal: Neoprene or foam rubber. 8.
 - Insulation Fill: 1-inch-thick, fibrous-glass or polystyrene-foam board. 9.

2.11 DUCT ACCESS PANEL ASSEMBLIES

- Manufacturers: Subject to compliance with requirements, provide products by one of the Α. following:
 - Ductmate Industries, Inc. 1.
 - 2. Flame Gard, Inc.
 - 3. 3M.
- Β. Labeled according to UL 1978 by an NRTL.

17-13 OSU, College of Osteopathic Medicine at **Cherokee Nation** Childers Architect 07-26-19

- C. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.
- D. Fasteners: Carbon steel. Panel fasteners shall not penetrate duct wall.
- E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.
- F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.12 **FLEXIBLE CONNECTORS**

- Α. Manufacturers: Subject to compliance with requirements, provide products by one of the followina:
 - 1. Ductmate Industries, Inc.
 - Duro Dyne Inc. 2.
 - 3. Ventfabrics. Inc.
 - Ward Industries, Inc.; a division of Hart & Cooley, Inc. 4
- В. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - Minimum Weight: 26 oz./sq. yd.. 1.
 - Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling. 2.
 - Service Temperature: Minus 40 to plus 200 deg F. 3.
- Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, F. synthetic rubber resistant to UV rays and ozone.
 - Minimum Weight: 24 oz./sq. yd.. 1.
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.

2.13 FLEXIBLE DUCTS

- Α. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - Flexmaster U.S.A., Inc. 1.
 - 2. McGill AirFlow LLC.
 - Ward Industries, Inc.; a division of Hart & Cooley, Inc. 3.
- Noninsulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, Β. spring-steel wire.
 - Pressure Rating: 10-inch wg positive and 1.0-inch wg negative. 1.
 - Maximum Air Velocity: 4000 fpm. 2.
 - Temperature Range: Minus 10 to plus 160 deg F. 3.
- C. Insulated, Flexible Duct: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound, spring-steel wire; fibrous-glass insulation; vapor-barrier film.
 - Pressure Rating: 10-inch wg positive and 1.0-inch wg negative. 1.
 - Maximum Air Velocity: 4000 fpm. 2.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

AIR DUCT ACCESSORIES

- 3. Temperature Range: Minus 20 to plus 210 deg F.
- 4. Insulation R-value: Comply with ASHRAE/IESNA 90.1-2007.
- D. Flexible Duct Connectors:
 - Clamps: Nylon strap in sizes 3 through 18 inches, to suit duct size. 1.

2.14 DUCT ACCESSORY HARDWARE

- Α. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- Β. Adhesives: High strength, guick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- Α. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - Install steel volume dampers in steel ducts. 1.
 - Install aluminum volume dampers in aluminum ducts. 2.
- D. Set dampers to fully open position before testing, adjusting, and balancing.
- E. Install test holes at fan inlets and outlets and elsewhere as indicated.
- F. Install fire and smoke dampers according to UL listing.
- G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - On both sides of duct coils. 1.
 - Upstream and downstream from duct filters. 2.
 - At outdoor-air intakes and mixed-air plenums. 3.
 - At drain pans and seals. 4
 - Downstream from manual volume dampers, control dampers, backdraft dampers, and 5. equipment.
 - 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 7. Upstream or downstream from duct silencers.
 - Control devices requiring inspection. 8.

17-13 OSU, College of Osteopathic Medicine at **Cherokee Nation** Childers Architect 07-26-19

AIR DUCT ACCESSORIES

- 9. Elsewhere as indicated.
- H. Install access doors with swing against duct static pressure.
- I. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- J. Label access doors according to Section 23 0553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- K. Install flexible connectors to connect ducts to equipment.
- L. Connect terminal units to supply ducts directly or with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.
- M. Connect diffusers or light troffer boots to ducts directly or with maximum 72-inch lengths of flexible duct clamped or strapped in place, except use rigid elbow for final connection to all diffusers. Limit to, except no flex duct allowed above gypsum ceilings. Support flex duct with strap that is ≥ 1" in width.
- N. Connect flexible ducts to metal ducts with draw bands.
- O. Install duct test holes where required for testing and balancing purposes.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.

SECTION 23 3423

HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:1. Ceiling-mounted ventilators.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.
 - 3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

PART 2 - PRODUCTS

2.1 CEILING-MOUNTED VENTILATORS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Broan-NuTone LLC.
 - 2. <u>Carnes Company</u>.
 - 3. <u>Greenheck Fan Corporation</u>.
 - 4. Loren Cook Company.
 - 5. <u>PennBarry</u>.
 - 6. <u>Twin City.</u>
- B. Housing: Steel, lined with acoustical insulation.

HVAC POWER VENTILATORS

- C. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.
- D. Grille: Painted aluminum, louvered grille with flange on intake and thumbscrew attachment to fan housing.
- E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.
- F. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Manual Starter Switch: Single-pole rocker switch assembly with cover and pilot light.
 - 3. Time-Delay Switch: Assembly with single-pole rocker switch, timer, and cover plate.
 - 4. Motion Sensor: Motion detector with adjustable shutoff timer.
 - 5. Ceiling Radiation Damper: Fire-rated assembly with ceramic blanket, stainless-steel springs, and fusible link.
 - 6. Filter: Washable aluminum to fit between fan and grille.
 - 7. Isolation: Rubber-in-shear vibration isolators.
 - 8. Manufacturer's standard roof jack or wall cap, and transition fittings.

2.2 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 0513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.3 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. .
- B. Support units using restrained spring isolators having a static deflection of 1 inchVibration control devices are specified in Section 23 0548 "Vibration and Seismic Controls for HVAC Piping and Equipment."
- C. Ceiling Units: Suspend units from structure; use steel wire or metal straps.

- D. Support suspended units from structure using threaded steel rods and elastomeric hangers or spring hangers having a static deflection of 1 inch Install units with clearances for service and maintenance.
- E. Label units according to requirements specified in Section 23 0553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 23 3300 "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Section 26 0526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.
 - 7. Verify lubrication for bearings and other moving parts.
 - 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 - 10. Shut unit down and reconnect automatic temperature-control operators.
 - 11. Remove and replace malfunctioning units and retest as specified above.
- C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.

- C. Comply with requirements in Section 23 0593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.

SECTION 23 3600

AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:1. Shutoff, single-duct air terminal units.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For air terminal units. Include plans, elevations, sections, details, and attachments to other work.
- C. Delegated-Design Submittal:1. Materials, fabrication, assembly, and spacing of hangers and supports.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2007, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-Up."

1.6 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace terminal units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SHUTOFF, SINGLE-DUCT AIR TERMINAL UNITS

- A. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. METALAIRE, Inc.
 - 2. <u>Nailor Industries Inc</u>.
 - 3. <u>Price Industries</u>.
 - 4. <u>Titus</u>.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

- 5. Envirotec
- 6. Trane
- B. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.
- C. Casing: 0.034-inch steel, single wall.
 - 1. Casing Lining: Adhesive attached, 1/2-inch-thick, coated, fibrous-glass duct liner complying with ASTM C 1071, and having a maximum flame-spread index of 25 and a maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.
 - a. Cover liner with nonporous foil.
 - 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 - 3. Air Outlet: S-slip and drive connections, size matching inlet size.
 - 4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2007.
- D. Regulator Assembly: System-air-powered bellows section incorporating polypropylene bellows for volume regulation and thermostatic control. Bellows shall operate at temperatures from 0 to 140 deg F, shall be impervious to moisture and fungus, shall be suitable for 10-inch wg static pressure, and shall be factory tested for leaks.
- E. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 - 1. Maximum Damper Leakage: ARI 880 rated, 3 percent of nominal airflow at 6-inch wg inlet static pressure.
 - 2. Damper Position: Normally open.
- F. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain valve.
- G. Direct Digital Controls: Bidirectional damper operators and microprocessor-based controller and room sensor.
 - 1. Damper Actuator: 24 V, powered closed, spring return open.
 - 2. Terminal Unit Controller: Pressure-independent, variable-air-volume controller with electronic airflow transducer with multipoint velocity sensor at air inlet, factory calibrated to minimum and maximum air volumes, and having the following features:
 - a. Occupied and unoccupied operating mode.
 - b. Remote reset of airflow or temperature set points.
 - c. Adjusting and monitoring with portable terminal.
 - d. Communication with existing temperature-control system.
 - 3. Room Sensor: Wall mounted, with temperature set-point adjustment and access for connection of portable operator terminal.

2.2 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Steel Cables: Galvanized steel complying with ASTM A 603.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 3600 - 2

AIR TERMINAL UNITS

- D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- E. Air Terminal Unit Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- F. Trapeze and Riser Supports: Steel shapes and plates for units with steel casings; aluminum for units with aluminum casings.

2.3 SOURCE QUALITY CONTROL

- A. Factory Tests: Test assembled air terminal units according to ARI 880.
 - 1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, coil type, and ARI certification seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."
- B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.
- C. Install wall-mounted thermostats.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hangers Exposed to View: Threaded rod and angle or channel supports.
- D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.3 CONNECTIONS

- A. Install piping adjacent to air terminal unit to allow service and maintenance.
- B. Hot-Water Piping: In addition to requirements in Section 23 2113 "Hydronic Piping" and Section 23 2116 "Hydronic Piping Specialties," Section 15179 "Hydronic Piping Specialties,"

23 3600 - 3

connect heating coils to supply with shutoff valve, strainer, control valve, and union or flange; and to return with balancing valve and union or flange.

- C. Connect ducts to air terminal units according to Section 23 3113 "Metal Ducts."
- D. Make connections to air terminal units with flexible connectors complying with requirements in Section 23 3300 "Air Duct Accessories."

3.4 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Section 23 0553 "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
 - 2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Air terminal unit will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
 - 3. Verify that controls and control enclosure are accessible.
 - 4. Verify that control connections are complete.
 - 5. Verify that nameplate and identification tag are visible.
 - 6. Verify that controls respond to inputs as specified.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

SECTION 23 3713

DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Rectangular and square ceiling diffusers.
 - 2. Perforated diffusers.
 - 3. Louver face diffusers.
 - 4. Linear slot diffusers.
 - 5. Fixed face registers and grilles.
 - 6. Linear bar grilles.
 - 7. Fixed, extruded aluminum HVAC louvers.
- B. Related Sections:
 - 1. Section 23 3300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

- A. Rectangular and Square Ceiling Diffusers:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Carnes.
 - b. Krueger.
 - c. METALAIRE, Inc.
 - d. Nailor Industries Inc.
 - e. Price Industries.
 - f. Titus.
 - g. Tuttle & Bailey
- B. Perforated Diffuser:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 DIFFUSERS, REGISTERS, AND GRILLES

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Carnes.
 - b. Krueger.
 - c. METALAIRE, Inc.
 - d. Nailor Industries Inc.
 - e. Price Industries.
 - f. Titus.
 - g. Tuttle & Bailey
- C. Louver Face Diffuser:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Carnes.
 - b. Krueger.
 - c. METALAIRE, Inc.
 - d. Nailor Industries Inc.
 - e. Price Industries.
 - f. Titus.
 - g. Tuttle & Bailey

2.2 CEILING LINEAR SLOT OUTLETS

- A. Linear Bar Diffuser:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Carnes.
 - b. Krueger.
 - c. METALAIRE, Inc.
 - d. Nailor Industries Inc.
 - e. Price Industries.
 - f. Titus.
 - g. Tuttle & Bailey

2.3 REGISTERS AND GRILLES

- A. Register and Grilles:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Carnes.
 - b. Krueger.
 - c. Nailor Industries Inc.
 - d. Price Industries.
 - e. Titus.
 - f. Tuttle & Bailey

2.4 FIXED, EXTRUDED-ALUMINUM LOUVERS

A. Horizontal, Drainable-Blade Louver:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 3713 - 2

DIFFUSERS, REGISTERS, AND GRILLES

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Airolite Company, LLC (The).
 - b. Arrow United Industries; a division of Mestek, Inc.
 - c. Dowco Products Group; Safe Air of Illinois.
 - d. Greenheck Fan Corporation.
 - e. NCA Manufacturing, Inc.
 - f. Ruskin Company; Tomkins PLC.
 - g. United Enertech
- 2. Frame and Blade Nominal Thickness: Not less than 0.080 inch.
- 3. Mullion Type: Exposed.
- 4. AMCA Seal: Mark units with AMCA Certified Ratings Seal.
- 5. Louver Screens
 - a. General: Provide screen at each exterior louver.
 - b. Screen Location for Fixed Louvers: Interior face.
 - c. Screening Type: Bird screening.
 - d. Bird Screening: Aluminum, 1/2-inch-square mesh, 0.063-inch wire.

2.5 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

- 3.1 INSTALLATION
 - A. Install diffusers, registers, louvers, and grilles level and plumb.
 - B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
 - C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.
 - D. Louver Installation.
 - 1. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.
 - 2. Form closely fitted joints with exposed connections accurately located and secured.
 - 3. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.

23 3713 - 3

DIFFUSERS, REGISTERS, AND GRILLES

- 4. Protect unpainted galvanized and nonferrous-metal surfaces that are in contact with concrete, masonry, or dissimilar metals from corrosion and galvanic action by applying a heavy coating of bituminous paint or by separating surfaces with waterproof gaskets or nonmetallic flashing.
- 5. Install concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weathertight louver joints are required.

3.2 ADJUSTING

- A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.
- B. Restore louvers damaged during installation and construction so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.
 - 1. Touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with, factory-applied finish coating.

SECTION 23 7413

PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes packaged, outdoor, central-station air-handling units (rooftop units) with the following components and accessories:
 - 1. Direct-expansion cooling.
 - 2. Gas furnace.
 - 3. Economizer outdoor- and return-air damper section.
 - 4. Integral, space temperature controls.
 - 5. Roof curbs.

1.2 **DEFINITIONS**

- A. Outdoor-Air Refrigerant Coil: Refrigerant coil in the outdoor-air stream to reject heat during cooling operations and to absorb heat during heating operations. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.
- B. Outdoor-Air Refrigerant-Coil Fan: The outdoor-air refrigerant-coil fan in RTUs. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.
- C. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, outdoor, central-station air-handling units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.
- D. Supply-Air Fan: The fan providing supply-air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.
- E. Supply-Air Refrigerant Coil: Refrigerant coil in the supply-air stream to absorb heat (provide cooling) during cooling operations and to reject heat (provide heating) during heating operations. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.

1.3 ACTION SUBMITTALS

- A. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 7413 - 1

PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

1.4 INFORMATIONAL SUBMITTALS

- A. Field quality-control test reports.
- B. Warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

- A. ARI Compliance:
 - 1. Comply with ARI 210/240 and ARI 340/360 for testing and rating energy efficiencies for RTUs.
 - 2. Comply with ARI 270 for testing and rating sound performance for RTUs.
- B. ASHRAE Compliance:
 - 1. Comply with ASHRAE 15 for refrigerant system safety.
 - 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
 - 3. Comply with applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."
- D. NFPA Compliance: Comply with NFPA 90A and NFPA 90B.
- E. UL Compliance: Comply with UL 1995.
- F. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.7 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components of RTUs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.
 - 2. Warranty Period for Gas Furnace Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.
 - 3. Warranty Period for Solid-State Ignition Modules: Manufacturer's standard.
 - 4. Warranty Period for Control Boards: Manufacturer's standard.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. AAON, Inc.
 - 2. Carrier Corporation.
 - 3. Lennox Industries Inc.
 - 4. Trane; American Standard Companies, Inc.
 - 5. Daikin McQuay International.
 - 6. York-Johnson Controls

2.2 CASING

- A. General Fabrication Requirements for Casings: Formed and reinforced insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.
- B. Exterior Casing Material: Galvanized steel with factory-painted finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
 1. Exterior Casing Thickness: 0.052 inch thick.
- C. Casing Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 - 1. Materials: ASTM C 1071, Type I.
 - 2. Thickness: 2 inch, R-13 minimum.
- D. Condensate Drain Pans: Formed polymer complying with ASHRAE 62.1.1. Drain Connections: Threaded nipple.
- E. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

2.3 FANS

- A. Direct-Driven Supply-Air Fans: Forward curved, centrifugal plenum fan; with permanently lubricated, motor installed on an adjustable fan base resiliently mounted in the casing. Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.
- B. Condenser-Coil Fan: Propeller, mounted on shaft of permanently lubricated motor.
- C. Fan Motor: Comply with requirements in Section 23 0513 "Common Motor Requirements for HVAC Equipment."

2.4 COILS

- A. Supply-Air Refrigerant Coil:
 - 1. Aluminum-plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor.
 - 2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 7413 - 3

PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS pan.

- 3. Coil Split: Interlaced.
- 4. Condensate Drain Pan: Polymer with pitch and drain connections complying with ASHRAE 62.1.

2.5 REFRIGERANT CIRCUIT COMPONENTS

- A. Compressor: Hermetic scroll, mounted on vibration isolators; with internal overcurrent and hightemperature protection, internal pressure relief, and crankcase heater.
- B. Refrigeration Specialties:
 - 1. Refrigerant: R-410A.
 - 2. Expansion valve with replaceable thermostatic element.
 - 3. Refrigerant filter/dryer.
 - 4. Manual-reset high-pressure safety switch.
 - 5. Automatic-reset low-pressure safety switch.
 - 6. Minimum off-time relay.
 - 7. Automatic-reset compressor motor thermal overload.
 - 8. Brass service valves installed in compressor suction and liquid lines.

2.6 AIR FILTRATION

- A. Minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 - 1. Pleated: Minimum 90 percent arrestance, and MERV 7.

2.7 GAS FURNACE

- A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47 and NFPA 54.
 1. CSA Approval: Designed and certified by and bearing label of CSA.
- B. Burners: Stainless steel.
 - 1. Fuel: Natural gas.
 - 2. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.
- C. Heat-Exchanger and Drain Pan: Aluminum coated steel.
- D. Venting: Gravity vented with vertical extension.
- E. Safety Controls:
 - 1. Gas Control Valve: Single Stage.
 - 2. Gas Train: Single-body, regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff.

2.8 DAMPERS

- A. Outdoor- and Return-Air Mixing Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet.
 - 1. Damper Motor: Modulating with adjustable minimum position.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

23 7413 - 4

PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS 2. Relief-Air Damper: Gravity actuated or motorized, as required by ASHRAE/IESNA 90.1, with bird screen and hood.

2.9 ELECTRICAL POWER CONNECTION

A. Provide for single connection of power to unit with field installed unit mounted disconnect switch and control-circuit transformer with built-in overcurrent protection.

2.10 CONTROLS

A. Basic Unit Controls:

- 1. Control-voltage transformer.
- 2. Wall-mounted thermostat or sensor with the following features:
 - a. Heat-cool-off switch.
 - b. Fan on-auto switch.
 - c. Fan-speed switch.
 - d. Automatic changeover.
 - e. Adjustable deadband.
 - f. Exposed set point.
 - g. Exposed indication.
 - h. Degree F indication.
 - i. Unoccupied-period-override push button.

2.11 ACCESSORIES

A. Hail guards of galvanized steel, painted to match casing.

2.12 ROOF CURBS

A. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factoryinstalled wood nailer; complying with NRCA standards

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "Low-Slope Membrane Roofing Construction Details Manual," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts." Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 07 7200 "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.
- B. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.
- C. Install piping adjacent to RTUs to allow service and maintenance.

17-13 OSU, College of Osteopathic Medicine atPACKAGED, OUTDOOR,Cherokee Nation23 7413 - 5CENTRAL-STATION AIR-Childers ArchitectHANDLING UNITS07-26-1907-26-19

- 1. Gas Piping: Comply with applicable requirements in Section 23 1123 "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.
- D. Duct installation requirements are specified in other HVAC Sections. Drawings indicate the general arrangement of ducts.

3.2 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- B. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. Report results in writing.
- C. Tests and Inspections:
 - 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 - 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Remove and replace malfunctioning units and retest as specified above.

3.3 CLEANING AND ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to one visit to site during other-than-normal occupancy hours for this purpose.
- B. After completing system installation and testing, adjusting, and balancing RTU and airdistribution systems, clean filter housings and install new filters.

Oklahoma State University - Silencer Specification

SECTION 23 7500

HVAC SILENCERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Duct silencers.
- B. Related Sections:
 - 1. Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment".

1.3 SUBMITTALS

- A. Performance Data:
 - 1. Silencer manufacturer to provide submittal drawings detailing all duct silencer data specified in the mechanical drawing schedule.
 - 2. The silencer manufacturer shall provide, for approval, acoustical system calculations for all duct systems with silencers to demonstrate that the submitted silencers will meet NC-35 in the classroom space.

PART 2 - PRODUCTS

2.1 DUCT SILENCERS

- A. Basis-of-Design Product: Silencers shall be Vibro-Acoustics.
 - 1. Alternate manufacturers must request and obtain written approval by the Engineer to bid the project at least 10 days prior to the bid due-date.
- B. General Requirements:

- 1. Silencers shall be of the size, configuration, capacity and acoustic performance as scheduled on the drawings. All silencers shall be factory fabricated and supplied by the same manufacturer.
- 2. Silencer inlet and outlet connection dimensions must be equal to the duct sizes shown on the drawings. Duct transitions at silencers are not permitted unless shown on the contract drawings.
- 3. Silencers shall be constructed in accordance with ASHRAE and SMACNA standards for the pressure and velocity classification specified for the air distribution system in which it is installed. Material gauges noted in other sections are minimums. Material gauges shall be increased as required for the system pressure and velocity classification. The silencers shall not fail structurally when subjected to a differential air pressure of 8 inches water gauge.
- 4. All casing seams and joints shall be lock-formed and sealed or stitch welded and sealed to provide leakage-resistant construction. Airtight construction shall be achieved by use of a duct-sealing compound supplied and installed by the contractor at the jobsite.
- 5. All perforated steel shall be adequately stiffened to insure flatness and form. All spot welds shall be painted.
- 6. Fire-Performance Characteristics: Silencer assemblies, including acoustic media fill and sealants shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested according to ASTM E 84, NFPA 255 or UL 723.
- 7. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2007.
- C. Rectangular Elbow Silencers including models RED and EX-RED: Outer casing shall be ASTM A 653/A 653M, G90 galvanized sheet steel, 18 gauge. All acoustical splitters shall be internally radiused and aerodynamically designed for efficient turning of the air. Half and full splitters are required as necessary to achieve the scheduled insertion loss. All elbow silencers with a turning cross-section dimension greater than 48" shall have at least two half splitters and one full splitter.
- D. Inner perforated metal liner: ASTM A 653/A 653M, G90 galvanized sheet steel.
 - 1. Rectangular Elbow Silencers: 22 gauge.
- E. Principal Sound-Absorbing Mechanism:
 - 1. Dissipative silencers:
 - a. Models RED and EX-RED type with acoustic media. Media shall be of acoustic quality, shot-free glass fiber insulation with long, resilient fibers bonded with a thermosetting resin. Glass fiber density and compression shall be as required to insure conformance with laboratory test data. Glass fiber shall be packed with a minimum of 15% compression during silencer assembly. Media shall be resilient such that it will not crumble or break, and conform to irregular surfaces. Media shall not cause or accelerate corrosion of aluminum or steel. Mineral wool will not be permitted as a substitute for glass fiber.
- F. Capacities and Characteristics:
 - 1. See duct silencer performance schedule on mechanical drawings. Alternate manufacturer has to provide acoustical analysis to the Mechanical Consultant showing silencers meet the NC-35 in the classroom space.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install silencer according to manufacturer's written installation instructions.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Ensure duct silencers are installed with airflow arrows in direction of airflow.

SECTION 23 8126

SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.3 INFORMATIONAL SUBMITTALS

A. Warranty: Sample of special warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance:
 - 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2007.

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. For Compressor: Five year(s) from date of Substantial Completion.
 - b. For Parts: Five year(s) from date of Substantial Completion.
 - c. For Labor: Five year(s) from date of Substantial Completion.

23 8126 - 1

SPLIT-SYSTEM AIR-CONDITIONERS

PART 2 - PRODUCTS

2.1 INDOOR UNITS (5 TONS OR LESS)

- A. MANUFACTURERS
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Carrier Corporation; Home Comfort and HVAC Building & Industrial Systems.
 - b. Lennox International Inc.
 - c. Trane; a business of American Standard companies.
 - d. Aaon
 - e. York International Corp.; a division of Unitary Products Group.
- B. Horizontal, Evaporator-Fan Components:
 - 1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect.
 - a. Insulation: Faced, glass-fiber duct liner.
 - b. Drain Pans: Galvanized steel, with connection for drain; insulated.
 - 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermalexpansion valve. Comply with ARI 210/240.
 - 3. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements; with refractory ceramic support bushings, automatic-reset thermal cutout, built-in magnetic contactors, manual-reset thermal cutout, airflow proving device, and one-time fuses in terminal box for overcurrent protection.
 - 4. Fan: Direct drive, centrifugal.
 - 5. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 23 0513 "Common Motor Requirements for HVAC Equipment."
 - b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - 6. Air Filtration Section:
 - a. General Requirements for Air Filtration Section:
 - 1) Comply with NFPA 90A.
 - 2) Minimum Arrestance: According to ASHRAE 52.1 and MERV according to ASHRAE 52.2.
 - 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.
 - b. Disposable Panel Filters:
 - 1) Factory-fabricated, viscous-coated, flat-panel type.
 - 2) Thickness: 1 inch.
 - 3) Merv according to ASHRAE 52.2: 7
 - 4) Media: Fibrous material formed into deep-V-shaped pleats and held by selfsupporting wire grid.

23 8126 - 2

SPLIT-SYSTEM AIR-CONDITIONERS 5) Frame: Galvanized steel, with metal grid on outlet side, steel rod grid on inlet side, and hinged; with pull and retaining handles.

2.2 INDOOR WALL or CEILING MOUNTED (MINI-SPLIT) UNITS (5 TONSOR LESS)

- A. MANUFACTURERS
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings by the following:
 - a. <u>LG</u>.
 - b. Sanyo
 - c. Mitsubishi
 - d. Panasonic
 - e. Daikin
 - f. Trane.
- B. Wall-Mounted, Evaporator-Fan Components:
 - 1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
 - 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermalexpansion valve. Comply with ARI 210/240.
 - 3. Fan: Direct drive, centrifugal.
 - 4. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 23 0513 "Common Motor Requirements for HVAC Equipment."
 - b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - c. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 - d. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 - e. Mount unit-mounted disconnect switches on interior of unit.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 - 6. Condensate Drain Pans:
 - a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 - b. Single-wall, galvanized-steel sheet.
 - c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 - d. Pan-Top Surface Coating: Asphaltic waterproofing compound.
 - 7. Air Filtration Section:

23 8126 - 3

SPLIT-SYSTEM AIR-CONDITIONERS

- a. General Requirements for Air Filtration Section:
 - 1) Comply with NFPA 90A.
 - 2) Minimum Arrestance: According to ASHRAE 52.1 and MERV according to ASHRAE 52.2.
 - 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.

2.3 OUTDOOR UNITS (5 TONSOR LESS)

- A. Air-Cooled, Compressor-Condenser Components:
 - 1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 - 2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - a. Compressor Type: Scroll.
 - b. Refrigerant Charge: R-410A.
 - c. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 210/240.
 - 3. Fan: Aluminum-propeller type, directly connected to motor.
 - 4. Motor: Permanently lubricated, with integral thermal-overload protection.
 - 5. Low Ambient Kit: Permits operation down to 20 deg F
 - 6. Mounting Base: Polyethylene.

2.4 ACCESSORIES

- A. Thermostat: Low voltage with subbase to control compressor and evaporator fan.
- B. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
 - 1. Compressor time delay.
 - 2. 24-hour time control of system stop and start.
 - 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 - 4. Fan-speed selection including auto setting.
- C. Automatic-reset timer to prevent rapid cycling of compressor.
- D. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.
- E. Drain Hose: For condensate.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Install ground-mounted, compressor-condenser components on 4-inch-hick, reinforced concrete base that is 4 inches larger, on each side, than unit. Concrete, reinforcement, and formwork are specified in Section 03 3000 "Cast-in-Place Concrete." Coordinate anchor installation with concrete base.
- D. Install roof-mounted, compressor-condenser components on equipment supports specified in Section 07 7200 "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.
- E. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.
- C. Duct Connections: Duct installation requirements are specified in Section 23 3113 "Metal Ducts." Drawings indicate the general arrangement of ducts. Connect supply and return ducts to split-system air-conditioning units with flexible duct connectors. Flexible duct connectors are specified in Section 23 3300 "Air Duct Accessories."

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

SECTION 23 8219

FAN COIL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes fan-coil units and accessories.

1.3 **DEFINITIONS**

A. BAS: Building automation system.

1.4 ACTION SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Ceiling suspension components.
 - 2. Structural members to which fan-coil units will be attached.
 - 3. Method of attaching hangers to building structure.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Items penetrating finished ceiling, including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

- 6. Perimeter moldings for exposed or partially exposed cabinets.
- B. Field quality-control test reports.
- C. Warranty: Special warranty specified in this Section.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fan-coil units to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - 1. Maintenance schedules and repair part lists for motors, coils, integral controls, and filters.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fan-Coil-Unit Filters: Furnish one spare filters for each filter installed.
 - 2. Fan Belts: Furnish spare one fan belt for each unit installed.

1.8 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.9 COORDINATION

A. Coordinate layout and installation of fan-coil units and suspension system components with other construction that penetrates or is supported by ceilings, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.

1.10 WARRANTY

A. Warranty Period: One year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 DUCTED FAN-COIL UNITS

- A. Basis-of-Design Product: Provide product indicated on Drawings or a comparable product by one of the following:
 - 1. <u>Carrier Corporation</u>.
 - 2. <u>Environmental Technologies, Inc.</u>
 - 3. <u>Trane</u>.
 - 4. <u>Titus.</u>
 - 5. <u>YORK International Corporation</u>.
- B. Description: Factory-packaged and -tested units rated according to ARI 440, ASHRAE 33, and UL 1995.
- C. Coil Section Insulation: 1/2-inch thick coated glass fiber complying with ASTM C 1071 and attached with adhesive complying with ASTM C 916.
 - 1. Fire-Hazard Classification: Insulation and adhesive shall have a combined maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84.
 - 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Drain Pans: Insulated galvanized steel. Fabricate pans and drain connections to comply with ASHRAE 62.1.
- E. Chassis: Galvanized steel where exposed to moisture, with baked-enamel finish and removable access panels.
- F. Cabinets: Steel with baked-enamel finish in manufacturer's standard paint color.
 - 1. Return-Air Plenum on Vertical units: Sheet metal plenum finished to match the chassis.
 - 2. Mixing Plenum: Sheet metal plenum finished and insulated to match the chassis with outdoor- and return-air, formed-steel dampers.
 - 3. Dampers: Galvanized steel with extruded-vinyl blade seals, flexible-metal jamb seals, and interlocking linkage.
- G. Filters: Minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 - 1. Pleated Cotton-Polyester Media: 90 percent arrestance and 7 MERV.
- H. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain.
- I. Direct-Driven Fans: Double width, forward curved, centrifugal; with permanently lubricated, multispeed motor resiliently mounted in the fan inlet. Aluminum or painted-steel wheels, and painted-steel or galvanized-steel fan scrolls.
- J. Belt-Driven Fans: Double width, forward curved, centrifugal; with permanently lubricated, single-speed motor installed on an adjustable fan base resiliently mounted in the cabinet. Aluminum or painted-steel wheels, and painted-steel or galvanized-steel fan scrolls.

23 8219 - 3

- 1. Motors: Comply with requirements in Section 23 0513 "Common Motor Requirements for HVAC Equipment."
- K. Control devices and operational sequence are specified in Section 23 0548 "Vibration and Seismic Controls for HVAC Piping and Equipment."
- L. Electrical Connection: Factory wire motors and controls for a single electrical connection.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive fan-coil units for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in for piping and electrical connections to verify actual locations before fancoil-unit installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install fan-coil units level and plumb.
- B. Install fan-coil units to comply with NFPA 90A.
- C. Suspend fan-coil units from structure with elastomeric hangers. Vibration isolators are specified in Section 23 0548 "Vibration and Seismic Controls for HVAC Piping and Equipment."
- D. Verify locations of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation.
- E. Install new filters in each fan-coil unit within two weeks after Substantial Completion.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:
 - 1. Install piping adjacent to machine to allow service and maintenance.
 - 2. Connect piping to fan-coil-unit factory hydronic piping package. Install piping package if shipped loose.
 - 3. Connect condensate drain to indirect waste.
 - a. Install condensate trap of adequate depth to seal against the pressure of fan. Install cleanouts in piping at changes of direction.
- B. Connect supply and return ducts to fan-coil units with flexible duct connectors specified in Section 23 3300 "Air Duct Accessories." Comply with safety requirements in UL 1995 for duct connections.

- C. Ground equipment according to Section 26 0526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- B. Remove and replace malfunctioning units and retest as specified above.

3.5 ADJUSTING

A. Adjust initial temperature and humidity set points.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fan-coil units. Refer to Section 01 7900 "Demonstration and Training."

END OF SECTION

SECTION 25 5050

DIRECT DIGITAL CONTROLS SYSTEM

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Building Management System (BMS), utilizing direct digital controls.

1.2 RELATED WORK SPECIFIED ELSEWHERE

- A. Products Installed But Not Supplied Under This Section:1. Thermostats with standalone units.
- B. Products Not Furnished or Installed But Integrated with the Work of This Section:
 1. Smoke detectors (through alarm relay contacts).
- C. Work Required Under Other Divisions Related to This Section:
 - 1. Power wiring to line side of motor starters, disconnects or variable frequency drives.
 - 2. Provision and wiring of smoke detectors and other devices relating to fire alarm system.
 - 3. Campus LAN (Ethernet) connection adjacent to JACE network management controller.
 - 4. Electrical submeters provided and installed by Electrical Contractor. Submeters to be provided with BACnet ms/tp communication.
 - 5. Solar Panel System and associated power meters
 - 6. Television display of Solar Panel System savings. Controls contractor to provide custom graphic appropriate for public display of Solar Panel system power data.

1.3 RELATED SECTIONS

A. Section 230500 - Common Work Results for HVAC.

1.4 SYSTEM DESCRIPTION

- A. Scope: Furnish all labor, materials and equipment necessary for a complete and operating Building Management System (BMS), utilizing Direct Digital Controls as shown on the drawings and as described herein. Drawings are diagrammatic only. All controllers furnished in this section shall communicate on a peer-to-peer BACnet protocol bus.
 - 1. System architecture shall fully support a multi-vendor environment and be able to integrate third party systems via protocols including, as a minimum, LonTalk, BACnet and MODBUS.
 - 2. System architecture shall provide secure Web access using any of the current versions of Microsoft Internet Explorer, Mozilla Firefox, or Google Chrome browsers from any computer on the owner's LAN.
 - 3. Any control vendor that shall provide additional BMS server software shall be unacceptable.
 - 4. The BMS server or Master Controller shall host all graphic files for the control system.
 - 5. Provide all hardware, software, programming tools and documentation necessary to modify the system, accommodate system expansion, and facilitate changes in operation on site. Modification includes addition and deletion of devices, circuits, and

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

25 5050 - 1

changes to system operation and custom label changes for devices and circuits. The system structure and software shall place no limit on the type or extent of software modifications on-site.

- 6. Owner shall receive all Administrator level login and passwords for engineering toolset at first training session. The Owner shall have full licensing and full access rights for all network management, operating system server, engineering and programming software required for the ongoing maintenance and operation of the BMS.
- 7. All JACE hardware licenses and certificates shall be stored on local MicroSD memory card employing encrypted "safe boot" technology.
- B. All products of the BMS shall be provided with the following agency approvals. Verification that the approvals exist for all submitted products shall be provided on request, with the submittal package. Systems or products not currently offering the following approvals are not acceptable.
 - 1. Federal Communications Commission (FCC), Rules and Regulations, Volume II -July 1986 Part 15 Class A Radio Frequency Devices.
 - 2. FCC, Part 15, Subpart B, Class B
 - 3. FCC, Part 15, Subpart C
 - 4. FCC, Part 15, Subpart J, Class A Computing Devices.
 - 5. UL 504 Industrial Control Equipment.
 - 6. UL 506 Specialty Transformers.
 - 7. UL 910 Test Method for Fire and Smoke Characteristics of Electrical and Optical-Fiber Cables Used in Air-Handling Spaces.
 - 8. UL 916 Energy Management Systems All.
 - 9. UL 1449 Transient Voltage Suppression.
 - 10. Standard Test for Flame Propagation Height of Electrical and Optical Fiber Cables Installed Vertically in Shafts.
 - 11. EIA/ANSI 232-E Interface Between Data Technical Equipment and Data Circuit Terminal Equipment Employing Serial Binary Data Interchange.
 - 12. EIA 455 Standard Test Procedures for Fiber Optic Fibers, Cables, Transducers, Connecting and Terminating Devices.
 - 13. IEEE C62.41- Surge Voltages in Low-Voltage AC Power Circuits.
 - 14. IEEE 142 Recommended Practice for Grounding of Industrial and Commercial Power Systems.
 - a. NEMA 250 Enclosures for Electrical Equipment.
 - 15. NEMA ICS 1 Industrial Controls and Systems.
 - 16. NEMA ST 1 Specialty Transformers.
 - 17. NCSBC Compliance, Energy: Performance of control system shall meet or surpass the requirements of ASHRAE/IESNA 90.1-1999.
 - 18. CE 61326.
 - 19. C-Tick.
 - 20. cUL.

1.5 SPECIFICATION NOMENCLATURE

- A. Acronyms used in this specification are as follows:
 - 1. Actuator: Control device that opens or closes valve or damper in response to control signal.
 - 2. Al: Analog Input.
 - 3. AO: Analog Output.
 - 4. Analog: Continuously variable state over stated range of values.
 - 5. BMS: Building Management System.
 - 6. DDC: Direct Digital Control.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

25 5050 - 2

- 7. Discrete: Binary or digital state.
- 8. DI: Discrete Input.
- 9. DO: Discrete Output.
- 10. FC: Fail Closed position of control device or actuator. Device moves to closed position on loss of control signal or energy source.
- 11. FO: Fail open (position of control device or actuator). Device moves to open position on loss of control signal or energy source.
- 12. GUI: Graphical User Interface.
- 13. HVAC: Heating, Ventilating and Air Conditioning.
- 14. IDC: Interoperable Digital Controller.
- 15. ILC: Interoperable Lon Controller.
- 16. LAN: Local Area Network.
- 17. Modulating: Movement of a control device through an entire range of values, proportional to an infinitely variable input value.
- 18. Motorized: Control device with actuator.
- 19. NAC: Network Area Controller.
- 20. NC: Normally closed position of switch after control signal is removed or normally closed position of manually operated valves or dampers.
- 21. NO: Normally open position of switch after control signal is removed; or the open position of a controlled valve or damper after the control signal is removed; or the usual position of a manually operated valve.
- 22. OSS: Operating System Server, host for system graphics, alarms, trends, etc.
- 23. Operator: Same as actuator.
- 24. PC: Personal Computer.
- 25. Peer-to-Peer: Mode of communication between controllers in which each device connected to network has equal status and each shares its database values with all other devices connected to network.
- 26. P: Proportional control; control mode with continuous linear relationship between observed input signal and final controlled output element.
- 27. PI: Proportional-Integral control, control mode with continuous proportional output plus additional change in output based on both amount and duration of change in controller variable (reset control).
- 28. PICS: BACnet Product Interoperability Compliance Statement.
- 29. PID: Proportional-Integral-Derivative control, control mode with continuous correction of final controller output element versus input signal based on proportional error, its time history (reset) and rate at which it's changing (derivative).
- 30. Point: Analog or discrete instrument with addressable database value.
- 31. WAN: Wide Area Network.

1.6 SUBMITTALS

- A. Submit under provisions of Section 013000 Administrative Requirements.
- B. Product Data: Manufacturer's data sheets on each product to be used, including:
 - 1. Catalog Information
 - 2. Detailed Product Information / Data Sheets
 - 3. Installation and/or Maintenance Instructions
- C. Submit documentation of contractor qualifications if requested by the A-E.
- D. Five copies of shop drawings of the entire control system shall be submitted and shall consist of a complete list of equipment and materials, including manufacturers' catalog data sheets and installation instructions. Submit in printed electronic format. Samples of written Controller Checkout Sheets and Performance Verification Procedures for applications similar

25 5050 - 3

DIRECT DIGITAL

CONTROLS SYSTEM

```
17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation
Childers Architect
07-26-19
```

in scope shall be included for approval.

- E. Shop drawings shall also contain complete wiring and schematic diagrams, sequences of operation, control system bus layout and any other details required to demonstrate that the system has been coordinated and will properly function as a system. Terminal identification for all control wiring shall be shown on the shop drawings.
- F. Upon completion of the work, provide 5 complete sets of ' as-built' drawings and other project-specific documentation in 3-ring hard-backed binders and on digital media.
- G. Any deviations from these specifications or the work indicated on the drawings shall be clearly identified in the Submittals.

1.7 QUALITY ASSURANCE

- A. The Control System Contractor shall have a full service DDC office within 50 miles of the job site. This office shall be staffed with applications engineers, software engineers and field technicians. This office shall maintain parts inventory and shall have all testing and diagnostic equipment necessary to support this work, as well as staff trained in the use of this equipment.
- B. Single Source Responsibility of Supplier: The Control System Contractor shall be responsible for the complete installation and proper operation of the control system. The Control System Contractor shall exclusively be in the regular and customary business of design, installation and service of computerized building management systems similar in size and complexity to the system specified.
- C. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in the production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.

1.8 DELIVERY, STORAGE AND HANDLING

A. Maintain integrity of shipping cartons for each piece of equipment and control device through shipping, storage and handling as required to prevent equipment damage. Store equipment and materials inside and protected from weather.

1.9 JOB CONDITIONS

A. Cooperation with Other Trades: Coordinate the Work of this section with that of other sections to insure that the Work will be carried out in an orderly fashion. It shall be this Contractor's responsibility to check the Contract Documents for possible conflicts between his Work and that of other crafts in equipment location, pipe, duct and conduit runs, electrical outlets and fixtures, air diffusers and structural and architectural features.

1.10 SEQUENCING

A. Ensure that products of this section are supplied to affected trades in time to prevent interruption of construction progress.

PART 2 PRODUCTS

2.1 MANUFACTURERS

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

25 5050 - 4

- A. Acceptable Manufacturers:
- 1. KMC Controls as provided by Harrison Energy Partners
- B. Substitutions: Engineer Approval Required

2.2 GENERAL

- A. The Building Management System (BMS) shall be comprised of a network of interoperable, stand-alone digital controllers, a network area controller, graphics and programming and other control devices for a complete system as specified herein.
- B. The installed system shall provide secure password access to all features, functions and data contained in the overall BMS.

2.3 OPEN, INTEROPERABLE, INTEGRATED ARCHITECTURE

- A. The intent of this specification is to provide a peer-to-peer networked, stand-alone, distributed control system utilizing Open protocols in one open, interoperable system.
- B. The supplied computer software shall employ object-oriented technology (OOT) for representation of all data and control devices within the system. Physical connection of any BACnet control equipment shall be via BACnet ms/tp or IP.
- C. All components and controllers supplied under this contract shall be true "peer-to-peer" communicating devices. Components or controllers requiring "polling" by a host to pass data shall not be acceptable.
- D. The supplied system shall incorporate the ability to access all data using HTML5 enabled browsers without requiring proprietary operator interface and configuration programs or browser plug-ins. An Open Database Connectivity (ODBC) or Structured Query Language (SQL) compliant server database is required for all system database parameter storage. This data shall reside on the Operating System Server located in the Facilities Office on the LAN. Systems requiring proprietary database and user interface programs shall not be acceptable.
- E. A hierarchical topology is required to assure reasonable system response times and to manage the flow and sharing of data without unduly burdening the customer's internal Intranet network. Systems employing a "flat" single tiered architecture shall not be acceptable.
 - 1. Maximum acceptable response time from any alarm occurrence (at the point of origin) to the point of annunciation shall not exceed 5 seconds for network connected user interfaces.
 - 2. Maximum acceptable response time from any alarm occurrence (at the point of origin) to the point of annunciation shall not exceed 60 seconds for remote or dial-up connected user interfaces.

2.4 BAS SERVER HARDWARE

- A. Minimum Computer Configuration (Hardware Independent).
 - 1. Central Server. Owner shall provide a dedicated BAS server with configuration that includes the following components as a minimum:
 - 2. Processor: Intel Xeon CPU E5-2640 x64 (or better), compatible with dual- and quadcore processors.

DIRECT DIGITAL CONTROLS SYSTEM

3. Memory: 2 GB or more recommended for large systems

17-13 OSU, College of Osteopathic Medicine at	
Cherokee Nation	25 5050 - 5
Childers Architect	
07-26-19	

- 4. Hard Drive: 256 GB minimum, more recommended depending on archiving requirements.
- 5. Display: Video card and monitor capable of displaying 1024 x 768 pixel resolution or greater.
- 6. Network Support: Ethernet adapter (10/100 Mb with RJ-45 connector).
- 7. Connectivity: Full-time high-speed ISP connection recommended for remote site access (i.e. T1, ADSL, cable modem).
- B. Standard Client: The thin-client Web Browser BAS GUI shall be Microsoft Internet Explorer (10.0 or later) running on Microsoft 7+. No special software shall be required to be installed on the PCs used to access the BAS via a web browser.

2.5 SYSTEM NETWORK CONTROLLER (SNC)

- A. These controllers are designed to manage communications between the programmable equipment controllers, application specific controllers and advanced unitary controllers which are connected to its communications trunks, manage communications between itself and other system network controllers, and perform control and operating strategies for the system based on information from any controller connected to the BAS.
- B. The controllers shall be fully programmable to meet the unique requirements of the facility it shall control.
- C. The controllers shall be capable of peer-to-peer communications with other SNC's and with any OWS connected to the BAS, whether the OWS is directly connected, connected via cellular modem or connected via the Internet.
- D. The communication protocols utilized for peer-to-peer communications between SNC's will be Niagara 4 Fox, BACnet TCP/IP and SNMP. Use of a proprietary communication protocol for peer-to-peer communications between SNC's is not allowed.
- E. The SNC shall employ a device count capacity license model that supports expansion capabilities.
- F. The SNC shall be enabled to support and shall be licensed with the following Open protocol drivers (client and server) by default:
 - 1. BACnet
 - 2. Lon
 - 3. MODBUS
 - 4. SNMP
 - 5. KNX
- G. The SNC shall be capable of executing application control programs to provide:
 - 1. Calendar functions.
 - 2. Scheduling.
 - 3. Trending.
 - 4. Alarm monitoring and routing.
 - 5. Time synchronization.
 - 6. Integration of LonWorks, BACnet, and MODBUS controller data.
 - 7. Network management functions for all SNC, PEC and ASC based devices.
- H. The SNC shall provide the following hardware features as a minimum:
 - 1. Two 10/100 Mbps Ethernet ports.
 - 2. Two Isolated RS-485 ports with biasing switches.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

25 5050 - 6

- 3. 1 GB RAM
- 4. 4 GB Flash Total Storage / 2 GB User Storage
- 5. Wi-Fi (Client or WAP)
- 6. USB Flash Drive
- 7. High Speed Field Bus Expansion
- 8. -20-60 degreesC Ambient Operating Temperature
- 9. Integrated 24 VAC/DC Global Power Supply
- 10. MicroSD Memory Card Employing Encrypted Safe Boot Technology
- I. The SNC shall support standard Web browser access via the Intranet/Internet. It shall support a minimum of 16 simultaneous users.
- J. The SNC shall provide alarm recognition, storage, routing, management and analysis to supplement distributed capabilities of equipment or application specific controllers.
- K. The SNC shall be able to route any alarm condition to any defined user location whether connected to a local network or remote via cellular modem, or wide-area network.
 - 1. Alarm generation shall be selectable for annunciation type and acknowledgement requirements including but not limited to:
 - a. Alarm.
 - b. Return to normal.
 - c. To default.
 - 2. Alarms shall be annunciated in any of the following manners as defined by the user:
 - a. Screen message text.
 - b. Email of complete alarm message to multiple recipients.
 - c. Pagers via paging services that initiate a page on receipt of email message.
 - d. Graphics with flashing alarm object(s).
 - 3. The following shall be recorded by the SNC for each alarm (at a minimum):
 - a. Time and date.
 - b. Equipment (air handler #, access way, etc.).
 - c. Acknowledge time, date, and user who issued acknowledgement.
- L. Programming software and all controller "Setup Wizards" shall be embedded into the SNC.
- M. The SNC shall support the following security functions.
 - 1. Module code signing to verify the author of programming tool and confirm that the code has not been altered or corrupted.
 - 2. Role-Based Access Control (RBAC) for managing user roles and permissions.
 - 3. Require users to use strong credentials.
 - 4. Data in Motion and Sensitive Data at Rest be encrypted.
 - 5. LDAP and Kerberos integration of access management.
- N. The SNC shall support the following data modeling structures to utilize Search; Hierarchy; Template; and Permission functionality:
 - 1. Metadata: Descriptive tags to define the structure of properties.
 - 2. Tagging: Process to apply metadata to components
 - 3. Tag Dictionary
- O. The SNC shall employ template functionality. Templates are a containerized set of configured data tags, graphics, histories, alarms... that are set to be deployed as a unit based upon manufacturer's controller and relationships. All lower level communicating controllers (PEC, AUC, AVAV, VFD.) shall have an associated template file for reuse on future project additions.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

25 5050 - 7

2.6 PROGRAMMABLE EQUIPMENT CONTROLLER (PEC)

- A. HVAC control shall be accomplished using BACnet based devices where the application has a BTL Listed PICS defined. The controller platform shall provide options and advanced system functions, programmable and configurable using Niagara 4 Framework, that allow standard and customizable control solutions required in executing the "Sequence of Operation".
- B. All PECs shall be application programmable and shall at all times maintain their certification. All control sequences within or programmed into the PEC shall be stored in non-volatile memory, which is not dependent upon the presence of a battery to be retained.
- C. The PEC shall provide LED indication of communication and controller performance to the technician, without cover removal.
- D. The PEC shall not require any external configuration tool or programming tool. All configuration and programming tasks shall be accomplished and accessible from within the Niagara 4 environment.
- E. The following integral and remote Inputs/Outputs shall be supported per each PEC:
 - 1. Digital inputs.
 - 2. Analog inputs (configurable as 0-10V, 0-10,000 ohm or, 20K NTC).
 - 3. Analog outputs.
 - 4. Digital outputs, configurable as maintained or floating motor control outputs.
 - 5. One integral power supply for auxiliary devices.
 - 6. If a 20 Vdc 65-mA power supply terminal is not integral to the PEC, provide at each PEC a separate, fully isolated, enclosed, current limited and regulated UL listed auxiliary power supply for power to auxiliary devices.
- F. Each PEC shall have expansion ability to support additional I/O requirements through the use of remote input/output modules.
- G. PEC Controllers shall support at minimum the following control techniques:
 - 1. General-purpose control loops that can incorporate Demand Limit Control strategies, Set point reset, adaptive intelligent recovery, and time of day bypass.
 - 2. General-purpose, non-linear control loops.
 - 3. Start/stop Loops.
 - 4. If/Then/Else logic loops.
 - 5. Math Function loops (MIN, MAX, AVG, SUM, SUB, SQRT, MUL, DIV, ENTHALPY).

2.7 OTHER CONTROL SYSTEM HARDWARE

- A. Wall Mount Room Temperature sensors: Room temperature sensors will be provided with HVAC equipment package. Each room temperature sensor shall provide temperature indication to the factory, digital controller, provide the capability for a software-limited occupant set point adjustment and limited operation override capability. Remote adjustment of room set points and limits of set points shall be adjustable from the BMS.
- B. Humidity sensors shall be thin-film capacitive type sensor with on-board nonvolatile memory, accuracy to plus or minus two percent (2%) at 10 to 95% RH, 12 30 VDC input voltage, analog output (0 10 VDC or 4 20mA output). Operating range shall be 0 to 100% RH and 32 to 122 degrees F.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

25 5050 - 8

- C. Carbon Dioxide Sensors (CO2): Sensors shall utilize Non-dispersive infrared technology. Sensor range shall be 0 - 2000 PPM. Accuracy shall be plus or minus three percent (3%) or 40 PPM, whichever is greater. Response shall be less than two minutes. Input voltage shall be 20 to 30 VAC or DC. Output shall be 0 - 10 VDC.
- D. Current Sensitive Switches: Solid state, split core current switch that operates when the current level (sensed by the internal current transformer) exceeds the adjustable trip point. Current switch to include an integral LED for indication of trip condition and a current level below trip set point.
- E. Differential Analog (duct) Static Pressure Transmitters Provide a pressure transmitter with integral capacitance type sensing and solid-state circuitry. Accuracy shall be plus or minus 1% of full range; range shall be selected for the specific application. Provide zero and span adjustment capability. Device shall have integral static pickup tube.
- F. Differential Air Pressure Switches: Provide SPDT type, UL-approved, and selected for the appropriate operating range where applied. Switches shall have adjustable set points and barbed pressure tips.
- G. Temperature Control Panels: Furnish temperature control panels of code gauge steel with hinged doors for each DDC controller. A complete set of ' as-built' control drawings (relating to the controls within that panel) shall be furnished within each control panel.
- H. Pipe and Duct Temperature sensing elements: 20,000-ohm thermistor temperature sensors with and accuracy of ±1% accuracy. Their range shall be -5 to 250 degrees F (-20 to 121 degrees C). Limited range sensors shall be acceptable provided they are capable of sensing the range expected for the point at the specified accuracy. Thermal wells with heat conductive gel shall be included.
- I. Low Air Temperature Sensors: Provide SPST type switch, with 15 to 55 degrees F (-9 to 13 degrees C), range, vapor-charged temperature sensor. Honeywell model L482A, or approved equivalent.
- J. Variable Frequency Drives: The variable frequency drives (VFD) for this project shall be provided factory installed with the HVAC equipment.
- K. Relays: Start/stop relay model shall provide either momentary or maintained switching action as appropriate for the motor being started. All relays shall be plugged in, interchangeable, mounted on a sub base and wired to numbered terminals strips. Relays installed in panels shall all be DPDT with indicating lamp. Relays installed outside of controlled devices shall be enclosed in a NEMA enclosure suitable for the location. Relays shall be labeled with UR symbol. RIB-style relays are acceptable for remote enable/disable.
- L. Control Power Transformers: Provide step-down transformers for all DDC controllers and devices as required. Transformers shall be sized for the load, but shall be sized for 50 watts, minimum. Transformers shall be UL listed Class 2 type, for 120 VAC/24 VAC operation.
- M. Line voltage protection: All DDC system control panels that are powered by 120 VAC circuits shall be provided with surge protection. This protection is in addition to any internal protection provided by the manufacturer. The protection shall meet UL, ULC 1449, IEEE C62.41B. A grounding conductor, (minimum 12 AWG), shall be brought to each control panel.

DIRECT DIGITAL

CONTROLS SYSTEM

2.8 BAS SERVER & WEB BROWSER GUI - SYSTEM OVERVIEW

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation25 5050 - 9Childers Architect07-26-19

- A. The BAS Contractor shall provide system software based on server/thin-client architecture, designed around the open standards of web technology. The BAS server shall communicate using Ethernet and TCP. Server shall be accessed using a web browser over Owner intranet and remotely over the Internet.
- B. The intent of the thin-client architecture is to provide the operator(s) complete access to the BAS system via a web browser. The thin-client web browser Graphical User Interface (GUI) shall be browser and operating system agnostic, meaning it will support HTML5 enabled browsers without requiring proprietary operator interface and configuration programs or browser plug-ins. Microsoft, Firefox, and Chrome browsers (current released versions), and Windows as well as non-Window operating systems.
- C. The BAS server software shall support at least the following server platforms (Windows 7, 8.1, Server 12). The BAS server software shall be developed and tested by the manufacturer of the system stand-alone controllers and network controllers/routers.
- D. The web browser GUI shall provide a completely interactive user interface and shall provide a HTML5 experience that supports the following features as a minimum:
 - 1. Trending.
 - 2. Scheduling.
 - 3. Electrical demand limiting.
 - 4. Duty Cycling.
 - 5. Downloading Memory to field devices.
 - 6. Real time 'live' Graphic Programs.
 - 7. Tree Navigation.
 - 8. Parameter change of properties.
 - 9. Set point adjustments.
 - 10. Alarm / event information.
 - 11. Configuration of operators.
 - 12. Execution of global commands.
 - 13. Add, delete, and modify graphics and displayed data.
- E. Software Components: All software shall be the most current version. All software components of the BAS system software shall be provided and installed as part of this project. BAS software components shall include:
 - 1. Server Software, Database and Web Browser Graphical User Interface.
 - 2. 1 Year Software Maintenance license.
 - 3. Embedded System Configuration Utilities for future modifications to the system and controllers.
 - 4. Embedded Graphical Programming Tools.
 - 5. Embedded Direct Digital Control software.
 - 6. Embedded Application Software.
- F. BAS Server Database: The BAS server software shall utilize a Java Database Connectivity (JDBC) compatible database such as: MS SQL 8.0, Oracle 8i or IBM DB2. BAS systems written to Non -Standard and/or Proprietary databases are NOT acceptable.
- G. Thin Client Web Browser Based: The GUI shall be thin client or browser based and shall meet the following criteria:
 - 1. Web Browser's for PC's: Only the current released browser (Explorer/Firefox/Chrome) will be required as the GUI and a valid connection to the server network. No installation of any custom software shall be required on the operator's GUI workstation/client. Connection shall be over an intranet or the Internet.
 - 2. Secure Socket Layers: Communication between the Web Browser GUI and BAS

17-13 OSU, College of Osteopathic Medicine at		DIRECT DIGITAL
Cherokee Nation	25 5050 - 10	CONTROLS SYSTEM
Childers Architect		
07-26-19		

server shall offer encryption using 128-bit encryption technology within Secure Socket Layers (SSL). Communication protocol shall be Hyper-Text Transfer Protocol (HTTP).

2.9 WEB BROWSER GRAPHICAL USER INTERFACE

- A. Web Browser Navigation: The Thin Client web browser GUI shall provide a comprehensive user interface. Using a collection of web pages, it shall be constructed to "feel" like a single application, and provide a complete and intuitive mouse/menu driven operator interface. It shall be possible to navigate through the system using a web browser to accomplish requirements of this specification. The Web Browser GUI shall (as a minimum) provide for navigation, and for display of animated graphics, schedules, alarms/events, live graphic programs, active graphic set point controls, configuration menus for operator access, reports and reporting actions for events.
- B. Login: On launching the web browser and selecting the appropriate domain name or IP address, the operator shall be presented with a login page that will require a login name and strong password. Navigation in the system shall be dependent on the operator's role-based application control privileges.
- C. Navigation: Navigation through the GUI shall be accomplished by clicking on the appropriate level of a navigation tree (consisting of an expandable and collapsible tree control like Microsoft's Explorer program) and/or by selecting dynamic links to other system graphics. Both the navigation tree and action pane shall be displayed simultaneously, enabling the operator to select a specific system or equipment and view the corresponding graphic. The navigation tree shall as a minimum provide the following views: Geographic, Network, Groups and Configuration.
 - 1. Geographic View shall display a logical geographic hierarchy of the system including: cities, sites, buildings, building systems, floors, equipment and objects.
 - 2. Groups View shall display Scheduled Groups and custom reports.
 - 3. Configuration View shall display all the configuration categories (Operators, Schedule, Event, Reporting and Roles).
- D. Action Pane: The Action Pane shall provide several functional views for each subsystem specified. A functional view shall be accessed by clicking on the corresponding button:
 - 1. Graphics: Using graphical format suitable for display in a web browser, graphics shall include aerial building/campus views, color building floor-plans, equipment drawings, active graphic set point controls, web content and other valid HTML elements. The data on each graphic page shall automatically refresh.
 - 2. Dashboards: User customizable data using drag and drop HTML5 elements. Shall include Web Charts, Gauges, and other custom developed widgets for web browser. User shall have ability to save custom dashboards.
 - 3. Search: User shall have multiple options for searching data based upon Tags. Associated equipment, real time data, Properties, and Trends shall be available in result.
 - 4. Properties: Shall include graphic controls and text for the following: Locking or overriding objects, demand strategies, and any other valid data required for setup. Changes made to the properties pages shall require the operator to depress an 'accept/cancel' button.
 - 5. Schedules: Shall be used to create, modify/edit and view schedules based on the systems hierarchy (using the navigation tree).
 - 6. Alarms: Shall be used to view alarm information geographically (using the navigation tree), acknowledge alarms, sort alarms by category, actions and verify reporting actions.
 - 7. Charting: Shall be used to display associated trend and historical data, modify colors,

17-13 OSU, College of Osteopathic Medicine atDIRECT DIGITALCherokee Nation25 5050 - 11CONTROLS SYSTEMChilders Architect07-26-19Control of the second s

date range, axis and scaling. User shall have ability to create HTML charts through web browser without utilizing chart builder. User shall be able to drag and drop single or multiple data points, including schedules, and apply status colors for analysis.

- 8. Logic Live Graphic Programs: Shall be used to display' live' graphic programs of the control algorithm, (micro block programming) for the mechanical/electrical system selected in the navigation tree.
- 9. Other actions such as Print, Help, Command, and Logout shall be available via a drop-down window.
- E. Color Graphics: The Web Browser GUI shall make extensive use of color in the graphic pane to communicate information related to set points and comfort. Animated .gifs or .jpg, vector scalable, active set point graphic controls shall be used to enhance usability. Graphics tools used to create Web Browser graphics shall be non-proprietary and conform to the following basic criteria:
 - 1. Display Size: The GUI workstation software shall graphically display in a minimum of 1024 by 768 pixels 24 bit True Color.
 - 2. General Graphic: General area maps shall show locations of controlled buildings in relation to local landmarks.
 - 3. Color Floor Plans: Floor plan graphics shall show heating and cooling zones throughout the buildings in a range of colors, as selected by Owner. Provide a visual display of temperature relative to their respective set points. The colors shall be updated dynamically as a zone's actual comfort condition changes.
 - 4. Mechanical Components: Mechanical system graphics shall show the type of mechanical system components serving any zone through the use of a pictorial representation of components. Selected I/O points being controlled or monitored for each piece of equipment shall be displayed with the appropriate engineering units. Animation shall be used for rotation or moving mechanical components to enhance usability.
 - 5. Minimum System Color Graphics: Color graphics shall be selected and displayed via a web browser for the following:
 - a. Each piece of equipment monitored or controlled including each terminal unit.
 - b. Each building.
 - c. Each floor and zone controlled.
- F. Hierarchical Schedules: Utilizing the Navigation Tree displayed in the web browser GUI, an operator (with proper access credentials) shall be able to define a Normal, Holiday or Override schedule for an individual piece of equipment or room, or choose to apply a hierarchical schedule to the entire system, site or floor area. All schedules that affect the system/area/equipment highlighted in the Navigation Tree shall be shown in a summary schedule table and graph.
 - 1. Schedules: Schedules shall comply with the LonWorks and BACnet standards, (Schedule Object, Calendar Object, Weekly Schedule property and Exception Schedule property) and shall allow events to be scheduled based on:
 - a. Types of schedule shall be Normal, Holiday or Override.
 - b. A specific date.
 - c. A range of dates.
 - d. Any combination of Month of Year (1-12, any), Week of Month (1-5, last, any), Day of Week (M-Sun, Any).
 - e. Wildcard (example, allow combinations like second Tuesday of every month).
 - 2. Schedule Categories: The system shall allow operators to define and edit scheduling categories (different types of "things" to be scheduled; for example, lighting, HVAC occupancy, etc.). The categories shall include: name, description, icon (to display in the hierarchy tree when icon option is selected) and type of value to be scheduled.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

25 5050 - 12

- 3. Schedule Groups: In addition to hierarchical scheduling, operators shall be able to define functional Schedule Groups, comprised of an arbitrary group of areas/rooms/equipment scattered throughout the facility and site. For example, the operator shall be able to define an ' individual tenant' group who may occupy different areas within a building or buildings. Schedules applied to the ' tenant group' shall automatically be downloaded to control modules affecting spaces occupied by the ' tenant group'.
- 4. Intelligent Scheduling: The control system shall be intelligent enough to automatically turn on any supporting equipment needed to control the environment in an occupied space. If the operator schedules an individual room in a VAV system for occupancy, for example, the control logic shall automatically turn on the VAV air handling unit, chiller, boiler and/or any other equipment required to maintain the specified comfort and environmental conditions within the room.
- 5. Partial Day Exceptions: Schedule events shall be able to accommodate a time range specified by the operator (ex: board meeting from 6 pm to 9 pm overrides Normal schedule for conference room).
- 6. Schedule Summary Graph: The schedule summary graph shall clearly show Normal versus Holiday versus Override Schedules and the net operating schedule that results from all contributing schedules. Note: In case of priority conflict between schedules at the different geographic hierarchy, the schedule for the more detailed geographic level shall apply.
- G. Alarms: Alarms associated with a specific system, area, or equipment selected in the Navigation Tree, shall be displayed in the Action Pane by selecting an 'Alarms' view. Alarms, and reporting actions shall have the following capabilities:
 - Alarms View: Each Alarm shall display an Alarms Category (using a different icon for each alarm category), date/time of occurrence, current status, alarm report and a bold URL link to the associated graphic for the selected system, area or equipment. The URL link shall indicate the system location, address and other pertinent information. An operator shall easily be able to sort events, edit event templates and categories, acknowledge or force a return to normal in the Events View as specified in this section.
 - 2. Alarm Categories: The operator shall be able to create, edit or delete alarm categories such as HVAC, Maintenance, Fire, or Generator. An icon shall be associated with each alarm category, enabling the operator to easily sort through multiple events displayed.
 - 3. Alarm Templates: Alarm template shall define different types of alarms and their associated properties. As a minimum, properties shall include a reference name, verbose description, severity of alarm, acknowledgement requirements, and high/low limit and out of range information.
 - 4. Alarm Areas: Alarm Areas enable an operator to assign specific Alarm Categories to specific Alarm Reporting Actions. For example, it shall be possible for an operator to assign all HVAC Maintenance Alarm on the 1st floor of a building to email the technician responsible for maintenance. The Navigation Tree shall be used to setup Alarm Areas in the Graphic Pane.
 - 5. Alarm Time/Date Stamp: All events shall be generated at the DDC control module level and comprise the Time/Date Stamp using the standalone control module time and date.
 - 6. Alarm Configuration: Operators shall be able to define the type of Alarm generated per object. A ' network' view of the Navigation Tree shall expose all objects and their respective Alarm Configuration. Configuration shall include assignment of Alarm, type of Acknowledgement and notification for return to normal or fault status.
 - 7. Alarm Summary Counter: The view of Alarm in the Graphic Pane shall provide a

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

25 5050 - 13

numeric counter, indicating how many Alarms are active (in alarm), require acknowledgement and total number of Alarms in the BAS Server database.

- 8. Alarm Auto-Deletion: Alarms that are acknowledged and closed shall be auto-deleted from the database and archived to a text file after an operator defined period.
- 9. Alarm Reporting Actions: Alarm Reporting Actions specified shall be automatically launched (under certain conditions) after an Alarm is received by the BAS server software. Operators shall be able to easily define these Reporting Actions using the Navigation Tree and Graphic Pane through the web browser GUI. Reporting Actions shall be as follows:
 - a. Print: Alarm information shall be printed to the BAS server's PC or a networked printer.
 - b. Email: Email shall be sent via any POP3-compatible e-mail server (most Internet Service Providers use POP3). Email messages may be copied to several email accounts. Note: Email reporting action shall also be used to support alphanumeric paging services, where email servers support pagers.
 - c. File Write: The ASCII File write reporting action shall enable the operator to append operator defined alarm information to any alarm through a text file. The alarm information that is written to the file shall be completely definable by the operator. The operator may enter text or attach other data point information (such as AHU discharge temperature and fan condition upon a high room temperature alarm).
 - d. Write Property: The write property reporting action updates a property value in a hardware module.
 - e. SNMP: The Simple Network Management Protocol (SNMP) reporting action sends an SNMP trap to a network in response to receiving an alarm.
 - f. Run External Program: The Run External Program reporting action launches specified program in response to an event.
- H. Trends: As system is engineered, all points shall be enabled to trend. Trends shall both be displayed and user configurable through the Web Browser GUI. Trends shall comprise analog, digital or calculated points simultaneously. A trend log's properties shall be editable using the Navigation Tree and Graphic Pane.
 - 1. Viewing Trends: The operator shall have the ability to view trends by using the Navigation Tree and selecting a Trends button in the Graphic Pane. The system shall allow y- and x-axis maximum ranges to be specified and shall be able to simultaneously graphically display multiple trends per graph.
 - 2. Local Trends: Trend data shall be collected locally by Multi-Equipment/Single Equipment general-purpose controllers, and periodically uploaded to the BAS server if historical trending is enabled for the object. Trend data, including run time hours and start time date shall be retained in non-volatile module memory. Systems that rely on a gateway/router to run trends are NOT acceptable.
 - 3. Resolution. Sample intervals shall be as small as one second. Each trended point will have the ability to be trended at a different trend interval. When multiple points are selected for displays that have different trend intervals, the system will automatically scale the axis.
 - 4. Dynamic Update. Trends shall be able to dynamically update at operator-defined intervals.
 - 5. Zoom/Pan. It shall be possible to zoom-in on a particular section of a trend for more detailed examination and ' pan through' historical data by simply scrolling the mouse.
 - 6. Numeric Value Display. It shall be possible to pick any sample on a trend and have the numerical value displayed.
 - 7. Copy/Paste. The operator shall have the ability to pan through a historical trend and copy the data viewed to the clipboard using standard keystrokes (i.e. CTRL+C,

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

25 5050 - 14

CTRL+V).

- I. Security Access: Systems that are accessed from the web browser GUI to BAS server shall require a Login Name and Strong Password. Access to different areas of the BAS system shall be defined in terms of Role-Based Access Control privileges as specified:
 - 1. Roles: Roles shall reflect the actual roles of different types of operators. Each role shall comprise a set of ' easily understood English language' privileges. Roles shall be defined in terms of View, Edit and Function Privileges.
 - a. View Privileges shall comprise: Navigation, Network, and Configuration Trees, Operators, Roles and Privileges, Alarm/Event Template and Reporting Action.
 - b. Edit Privileges shall comprise: Set point, Tuning and Logic, Manual Override, and Point Assignment Parameters.
 - c. Function Privileges shall comprise: Alarm/Event Acknowledgement, Control Module Memory Download, Upload, Schedules, Schedule Groups, Manual Commands, Print and Alarm/Event Maintenance.
 - 2. Geographic Assignment of Roles: Roles shall be geographically assigned using a similar expandable/collapsible navigation tree. For example, it shall be possible to assign two HVAC Technicians with similar competencies (and the same operator defined HVAC Role) to different areas of the system.

2.10 GRAPHICAL PROGRAMMING

- A. The system software shall include a Graphic Programming Language (GPL) for all DDC control algorithms resident in all control modules. Any system that does not use a drag and drop method of graphical icon programming shall not be accepted. All systems shall use a GPL method used to create a sequence of operations by assembling graphic microblocks that represent each of the commands or functions necessary to complete a control sequence. Microblocks represent common logical control devices used in conventional control systems, such as relays, switches, high signal selectors etc., in addition to the more complex DDC and energy management strategies such as PID loops and optimum start. Each microblock shall be interactive and contain the programming necessary to execute the function of the device it represents.
- B. Graphic programming shall be performed while on screen and using a mouse; each microblock shall be selected from a microblock library and assembled with other microblocks necessary to complete the specified sequence. Microblocks are then interconnected on screen using graphic "wires," each forming a logical connection. Once assembled, each logical grouping of microblocks and their interconnecting wires then forms a graphic function block which may be used to control any piece of equipment with a similar point configuration and sequence of operation.
- C. Graphic Sequence: The clarity of the graphic sequence shall be such that the operator has the ability to verify that system programming meets the specifications, without having to learn or interpret a manufacturer's unique programming language. The graphic programming shall be self-documenting and provide the operator with an understandable and exact representation of each sequence of operation.
- D. GPL Capabilities: The following is a minimum definition of the capabilities of the Graphic Programming software:
 - 1. Function Block (FB): Shall be a collection of points, microblocks and wires which have been connected together for the specific purpose of controlling a piece of HVAC equipment or a single mechanical system.
 - 2. Logical I/O: Input/Output points shall interface with the control modules in order to read various signals and/or values or to transmit signal or values to controlled

17-13 OSU, College of Osteopathic Medicine at	
Cherokee Nation	
Childers Architect	
07-26-19	

25 5050 - 15

devices.

- 3. Microblocks: Shall be software devices that are represented graphically and may be connected together to perform a specified sequence. A library of microblocks shall be submitted with the control contractors bid.
- 4. Wires: Shall be Graphical elements used to form logical connections between microblocks and between logical I/O.
- 5. Reference Labels: Labels shall be similar to wires in that they are used to form logical connections between two points. Labels shall form a connection by reference instead of a visual connection, i.e. two points labeled 'A' on a drawing are logically connected even though there is no wire between them.
- 6. Parameter: A parameter shall be a value that may be tied to the input of a microblock.
- 7. Properties: Dialog boxes shall appear after a microblock has been inserted which has editable parameters associated with it. Default parameter dialog boxes shall contain various editable and non-editable fields, and shall contain 'push buttons' for the purpose of selecting default parameter settings.
- 8. Icon: An icon shall be graphic representation of a software program. Each graphic microblock has an icon associated with it that graphically describes its function.
- 9. Menu-bar Icon: Shall be an icon that is displayed on the menu bar on the GPL screen, which represents its associated graphic microblock.
- 10. Live Graphical Programs: The Graphic Programming software shall support a ' live' mode, where all input/output data, calculated data and set points shall be displayed in a ' live' real-time mode.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Do not begin installation until substrates have been properly prepared.
- B. If substrate preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.

3.2 PREPARATION

- A. Clean surfaces thoroughly prior to installation.
- B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.

3.3 GENERAL

- A. Install system and materials in accordance with manufacturer's instructions, and as detailed on the project drawing set.
- B. Line and low voltage electrical connections to control equipment shown specified or shown on the control diagrams shall be furnished and installed by the Control System Contractor in accordance with these specifications.
- C. Equipment furnished by the Mechanical Contractor that is normally wired before installation shall be furnished completely wired. Control wiring normally performed in the field will be furnished and installed by the Control System Contractor.
- D. All control devices mounted on the face of control panels shall be clearly identified as to function and system served with permanently engraved phenolic labels.

25 5050 - 16

DIRECT DIGITAL

CONTROLS SYSTEM

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation
Childers Architect
07-26-19

3.4 WIRING

- A. All electrical control wiring to the control panels shall be the responsibility of the Control System Contractor.
- B. All wiring shall be in accordance with the Project Electrical Specifications (Division 26), the National Electrical Code and any applicable local codes. All control wiring shall be installed in raceways.
- C. Excess wire shall not be looped or coiled in the controller cabinet.
- D. Incorporate electrical noise suppression techniques in relay control circuits.
- E. There shall be no drilling on the controller cabinet after the controls are mounted inside.
- F. Careful stripping of wire while inside the cabinet is required to ensure that no wire strand fragments land on circuit boards.
- G. Use manufacturer-specified wire for all network connections.
- H. Use approved optical isolation and lightning protection when penetrating building envelope.
- I. Read installation instructions carefully. Any unavoidable deviations shall be approved by owner's rep prior to installation.

3.5 ACCEPTANCE TESTING

- A. Upon completion of the installation, the Control System Contractor shall load all system software and start-up the system. The Control System Contractor shall perform all necessary calibration, testing and de-bugging and perform all required operational checks to insure that the system is functioning in full accordance with these specifications.
- B. The Control System Contractor shall perform tests to verify proper performance of components, routines and points. Repeat tests until proper performance results. This testing shall include a point-by-point log to validate 100% of the input and output points of the DDC system operation.
- C. System Acceptance: Satisfactory completion is when the Control System Contractor has performed successfully all the required testing to show performance compliance with the requirements of the Contract Documents to the satisfaction of the Owner's Representative. System acceptance shall be contingent upon completion and review of all corrected deficiencies.

3.6 OPERATOR TRAINING

- A. During system commissioning and at such time acceptable performance of the Control System hardware and software has been established, the Control System Contractor shall provide on-site operator instruction to the owner's operating personnel. Operator instruction shall be done during normal working hours and shall be performed by a competent representative familiar with the system hardware, software and accessories.
- B. The Control System Contractor shall provide 8 total hours of comprehensive training for system orientation, product maintenance, and troubleshooting, The training shall start after final commissioning.

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation
Childers Architect
07-26-19

25 5050 - 17

3.7 WARRANTY PERIOD SERVICES

- A. Equipment, materials and workmanship incorporated into the work shall be warranted for a period of one year from the time of system acceptance.
- B. Within this period, upon notice by the Owner, any defects in the BMS due to faulty materials, methods of installation or workmanship shall be promptly repaired or replaced by the Control System Contractor at no expense to the Owner.
- C. Maintenance of Control Hardware: The Control System Contractor shall inspect, repair, replace, adjust, and calibrate, as required, the controllers, control devices and associated peripheral units during the warranty period. The Control System Contractor shall then furnish a report describing the status of the equipment, problem areas (if any) noticed during service work, and description of the corrective actions taken. The report shall clearly certify that all hardware is functioning correctly.
- D. Service Period: Calls for service by the Owner shall be honored within 24 hours and are not to be considered as part of routine maintenance.
- E. Service Documentation: A copy of the service report associated with each owner-initiated service call shall be provided to the owner.

3.8 WARRANTY ACCESS

A. The Owner shall grant to the Control System Contractor reasonable access to the BMS during the warranty period. Remote access to the BMS (for the purpose of diagnostics and troubleshooting, via the Internet, during the warranty period) will be allowed.

3.9 OPERATION & MAINTENANCE MANUALS

- A. See Division 1 for requirements. O&M manuals shall include the following elements, as a minimum:
 - 1. As-built control drawings for all equipment.
 - 2. As-built Network Communications Diagram.
 - 3. General description and specifications for all components.
 - 4. Completed Performance Verification sheets.
 - 5. Completed Controller Checkout/Calibration Sheets.

3.10 PROTECTION

- A. Protect installed products until completion of project.
- B. Touch-up, repair or replace damaged products before Substantial Completion.

END OF SECTION

SECTION 26 0519

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Copper building wire rated 600 V or less.
 - 2. Aluminum building wire rated 600 V or less.
 - 3. Metal-clad cable, Type MC, rated 600 V or less.
 - 4. Connectors, splices, and terminations rated 600 V and less.

1.3 **DEFINITIONS**

- A. RoHS: Restriction of Hazardous Substances.
- B. VFC: Variable-frequency controller.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Product Schedule: Indicate type, use, location, and termination locations.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

17-13 OSU, College of Osteopathic Medicine at	
Cherokee Nation	26 0519 - 1
Childers Architect	
07-26-19	

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

- A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.
- B. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. RoHS compliant.
 - 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
 - 4. #10 AWG and smaller shall be solid (not stranded).
- C. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 496 for stranded conductors.
- D. Conductor Insulation:
 - 1. Type NM: Comply with UL 83 and UL 719.
 - 2. Type RHH and Type RHW-2: Comply with UL 44.
 - 3. Type USE-2 and Type SE: Comply with UL 854.
 - 4. Type TC-ER: Comply with NEMA WC 70/ICEA S-95-658 and UL 1277.
 - 5. Type THHN and Type THWN-2: Comply with UL 83.
 - 6. Type THW and Type THW-2: Comply with NEMA WC-70/ICEA S-95-658 and UL 83.
 - 7. Type UF: Comply with UL 83 and UL 493.
 - 8. Type XHHW-2: Comply with UL 44.
- E. Shield:
 - 1. Type TC-ER: Cable designed for use with VFCs, with oversized crosslinked polyethylene insulation dual spirally wrapped copper tape shields and three bare symmetrically applied ground wires, and sunlight- and oil-resistant outer PVC jacket.

2.2 ALUMINUM BUILDING WIRE

- 1. Allowed only as a cost savings request by the owner.
- 2. Owner shall provide permission in writing (email).
- 3. Contractor shall obtain written permission (email) from local AHJ.
- 4. Do not submit bids with aluminum as basis of install unless approved prior to bid date.

2.3 METAL-CLAD CABLE, TYPE MC

- A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath. MC cable shall include grounding conductor.
- B. Shall primarily be used as whips for connections to equipment and lighting not to exceed 6ft in

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation26 0519 - 2Childers Architect07-26-19

length.

- C. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. Comply with UL 1569.
 - 3. RoHS compliant.
 - 4. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.
- E. Ground Conductor: Insulated.
- F. Conductor Insulation:
 - 1. Type TFN/THHN/THWN-2: Comply with UL 83.
 - 2. Type XHHW-2: Comply with UL 44.
- G. MC Steel Metal Clad Cable Requirements:
 - 1. MC Steel Metal Clad Cable must have the following:
 - a. Armor: Galvanized interlocking steel strip.
 - b. Conductors: Solid Copper.
 - c. Conductor Insulation: THHN/THWN
 - d. Assembly Covering: Polypropylene Tape
 - e. Maximum Temperature Rating: 90°C (dry)
 - f. Grounding: One grounding means, must be insulated copper conductor.
 - g. Neutral Conductor: White
 - h. Maximum Voltage Rating: 600V
 - i. Rating Compliance with the following:
 - 1) UL® 83, 1479, 1569, 1581, 2556
 - 2) Cable Tray Rated, install per NEC®
 - 3) UL® Classified 1, 2, and 3 hour through (Fire) penetration product, R–14141
 - 4) Environmental Air-Handling Space Installation per NEC® 300.22(C)
 - 2. Do Not Use MC Cable for the Following:
 - a. Homeruns to panelboards.
 - b. Where exposed to view.
 - c. Where exposed to damage.
 - d. Hazardous locations.
 - e. Wet locations.
 - f. When restricted otherwise above, and when specifically disallowed by the local AHJ or Owner.
 - g. Circuits supplied by an emergency or standby power source.
 - 3. Aluminum sheathing for MC Cable is not allowed.

2.4 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70,

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0519 - 3

by a qualified testing agency, and marked for intended location and use.

- B. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.
- C. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.
 - 1. Material: Copper.
 - 2. Termination: Compression.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Feeders: Copper for feeders smaller than No. 4 AWG; copper or aluminum for feeders No. 4 AWG and larger. Conductors shall be solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- C. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- D. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.
- E. VFC Output Circuits Cable: Extra-flexible stranded for all sizes.
- F. Power-Limited Fire Alarm and Control: Solid for No. 12 AWG and smaller.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Service Entrance: Type THHN/THWN-2, single conductors in raceway.
- B. Exposed Feeders: Type XHHW-2, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.
- E. Feeders Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.
- F. Feeders in Cable Tray: Type THHN/THWN-2, single conductors in raceway.
- G. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- H. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation26 0519 - 4Childers Architect07-26-19

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND

CABLES

conductors in raceway.

- I. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.
- J. Branch Circuits Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.
- K. Branch Circuits in Cable Tray: Type XHHW-2, single conductors larger than No. 1/0 AWG.
- L. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainlesssteel, wire-mesh, strain relief device at terminations to suit application.
- M. VFC Output Circuits: Type XHHW-2 in metal conduit.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 26 0533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 26 0529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 - 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.
 - 2. Push-in style connectors are not allowed.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

17-13 OSU, College of Osteopathic Medicine at	
Cherokee Nation	2
Childers Architect	
07-26-19	

26 0519 - 5

3.5 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 26 0553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 0544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 07 8413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections.
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
 - 2. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors and conductors feeding critical equipment and services for compliance with requirements.
 - 3. Perform each of the following visual and electrical tests:
 - a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 - b. Test bolted connections for high resistance using one of the following:
 - 1) A low-resistance ohmmeter.
 - 2) Calibrated torque wrench.
 - 3) Thermographic survey.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0519 - 6

- c. Inspect compression-applied connectors for correct cable match and indentation.
- d. Inspect for correct identification.
- e. Inspect cable jacket and condition.
- f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
- g. Continuity test on each conductor and cable.
- h. Uniform resistance of parallel conductors.
- 4. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 - a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- 5. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.
- E. Cables will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0519 - 8

SECTION 26 0526

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes grounding and bonding systems and equipment.
- B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 - 1. Underground distribution grounding.
 - 2. Ground bonding common with lightning protection system.
 - 3. Foundation steel electrodes.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans showing dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1. Test wells.
 - 2. Ground rods.
 - 3. Ground rings.
 - 4. Grounding arrangements and connections for separately derived systems.
- B. Qualification Data: For testing agency and testing agency's field supervisor.
- C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0526 - 1

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

- a. Plans showing as-built, dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1) Test wells.
 - 2) Ground rods.
 - 3) Ground rings.
 - 4) Grounding arrangements and connections for separately derived systems.
- b. Instructions for periodic testing and inspection of grounding features at test wells, ground rings, and grounding connections for separately derived systems based on NETA MTS and NFPA 70B.
 - 1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 - 2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches (unless noted otherwise on drawings) in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0526 - 2

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS Lexan or PVC, impulse tested at 5000 V.

- 1. Grounding bus bar shall be installed in each dedicated data equipment room/closet.
- 2. Install No. 6 AWG conductor connecting each grounding bus bar to the main service grounding distribution system.

2.3 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
- D. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.
- E. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.
- F. Cable-to-Cable Connectors: Compression type, copper or copper alloy.
- G. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.
- H. Conduit Hubs: Mechanical type, terminal with threaded hub.
- I. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- J. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- K. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.
- L. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.
- M. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.
- N. Straps: Solid copper, copper lugs. Rated for 600 A.
- O. Tower Ground Clamps: Mechanical type, copper or copper alloy.
- P. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.
- Q. Water Pipe Clamps:
 - 1. Mechanical type, two pieces with zinc-plated bolts.
 - a. Material: Die-cast zinc alloy.
 - b. Listed for direct burial.
 - 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

17-13 OSU, College of Osteopathic Medicine at		GROUNDING AND
Cherokee Nation	26 0526 - 3	BONDING FOR
Childers Architect		ELECTRICAL SYSTEMS
07-26-19		

2.4 GROUNDING ELECTRODES

- A. Ground Rods: Copper-clad steel; 3/4 inch diameter by 10 feet in length.
- B. Chemical-Enhanced Grounding Electrodes: Copper tube, straight or L-shaped, charged with nonhazardous electrolytic chemical salts.
 - 1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches long.
 - 2. Backfill Material: Electrode manufacturer's recommended material.
- C. Ground Plates: 1/4 inch thick, hot-dip galvanized.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 - 1. Bury at least 24 inches below grade.
 - 2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.
- C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
- D. Grounding Bus: Install in electrical equipment rooms, in rooms housing service and low voltage data equipment and elsewhere as indicated.
 - 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.
- E. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0526 - 4

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Comply with IEEE C2 grounding requirements.
- B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.
- C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.
- D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.5 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.
 - 4. Single-phase motor and appliance branch circuits.
 - 5. Three-phase motor and appliance branch circuits.
 - 6. Flexible raceway runs.
 - 7. Armored and metal-clad cable runs.
 - 8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.
- C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0526 - 5

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

- D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
- F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
- G. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.
- H. Metallic Fences: Comply with requirements of IEEE C2.
 - 1. Grounding Conductor: Bare copper, not less than No. 8 AWG.
 - 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
 - 3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.6 FENCE GROUNDING

- A. Fence Grounding: Install at maximum intervals of 1500 feet except as follows:
 - 1. Fences within 100 Feet of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet.
 - a. Gates and Other Fence Openings: Ground fence on each side of opening.
 - 1) Bond metal gates to gate posts.
 - 2) Bond across openings, with and without gates, except at openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches below finished grade.
- B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet on each side of crossing.
- C. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.
- D. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at grounding location.
- E. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.
- F. Bonding to Lightning-Protection System: If fence terminates at lightning-protected building or

17-13 OSU, College of Osteopathic Medicine atGROUNDING ANDCherokee Nation26 0526 - 6BONDING FORChilders ArchitectELECTRICAL SYSTEMS07-26-1907-26-19

structure, ground the fence and bond the fence grounding conductor to lightning-protection down conductor or lightning-protection grounding conductor, complying with NFPA 780.

3.7 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
- C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 - 2. Use exothermic welds for all below-grade connections.
 - 3. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
- D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 26 0543 "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches deep, with cover.
 - 1. Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.
- E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
- F. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

- 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- G. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.
- H. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.
- I. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each steel column, extending around the perimeter of building.
 - 1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.
 - 2. Bury ground ring not less than 24 inches from building's foundation.
- J. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.
 - 1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
 - 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.
- K. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.
 - 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 4. Make aluminum-to-galvanized-steel connections with tin-plated copper jumpers and mechanical clamps.
 - 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance SU. College of Osteopathic Medicine at GROUNDING AND

26 0526 - 8

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.

- a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
- b. Perform tests by fall-of-potential method according to IEEE 81.
- 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- D. Grounding system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.
- F. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 - 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 - 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).
 - 5. Substations and Pad-Mounted Equipment: 5 ohms.
 - 6. Manhole Grounds: 10 ohms.
- G. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION

SECTION 26 0529

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Steel slotted support systems.
 - 2. Aluminum slotted support systems.
 - 3. Nonmetallic slotted support systems.
 - 4. Conduit and cable support devices.
 - 5. Support for conductors in vertical conduit.
 - 6. Structural steel for fabricated supports and restraints.
 - 7. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
 - 8. Fabricated metal equipment support assemblies.
- B. Related Requirements:
 - 1. Section 26 0548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Slotted support systems, hardware, and accessories.
 - b. Clamps.
 - c. Hangers.
 - d. Sockets.
 - e. Eye nuts.
 - f. Fasteners.
 - g. Anchors.
 - h. Saddles.
 - i. Brackets.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS 2. Include rated capacities and furnished specialties and accessories.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Ductwork, piping, fittings, and supports.
 - 3. Structural members to which hangers and supports will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Items penetrating finished ceiling, including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Projectors.
- B. Seismic Qualification Data: Certificates, for hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M.
 - 2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 4000 "Quality Requirements," to design hanger and support system.
- B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency.

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation26 0529 - 2Childers Architect07-26-19

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS Identify products with appropriate markings of applicable testing agency.

- 1. Flame Rating: Class 1.
- 2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inchdiameter holes at a maximum of 8 inches o.c. in at least one surface.
 - 1. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 2. Material for Channel, Fittings, and Accessories: Galvanized steel or Stainless steel, Type 316 as suitable for environment.
 - 3. Channel Width: As required for applicable load.
 - 4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 5. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 - 6. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 - 7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Aluminum Slotted Support Systems: Extruded-aluminum channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches o.c. in at least one surface.
 - 1. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 2. Channel Material: 6063-T5 aluminum alloy.
 - 3. Fittings and Accessories Material: 5052-H32 aluminum alloy.
 - 4. Channel Width: Selected for applicable load.
 - 5. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 - 6. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 - 7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Conduit and Cable Support Devices: Steel, Stainless-steel, aluminum hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.
- F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

2.	Mechanical-Expansion Anchors	s: Insert-wedge-type, stainless :	steel, for use in hardened
17-13 OSU, College of Osteopathic Medicine at			HANGERS AND
Cherokee Na	tion	26 0529 - 3	SUPPORTS FOR
Childers Architect			ELECTRICAL SYSTEMS
07-26-19			

portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 05 5000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 - 1. NECA 1.
 - 2. NECA 101
 - 3. NECA 102.
 - 4. NECA 105.
 - 5. NECA 111.
- B. Comply with requirements in Section 07 8413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
- C. Comply with requirements for raceways and boxes specified in Section 26 0533 "Raceways and Boxes for Electrical Systems."
- D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by scheduled in NECA 1, where its Table 1 lists maximum spacings that are less than those stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with single-bolt conduit clamps.
- F. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0529 - 4

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT IMC and RMC may be supported by openings through structure members, according to NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 - 6. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69 or Spring-tension clamps.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 05 5000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0529 - 5

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

- B. Unless required otherwise from manufacturer, transformer pads, pads for distribution equipment, and Generator pads shall have 6" clear minimum around the perimeter of the enclosure.
- C. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 03 3000 "Cast-in-Place Concrete." Section 03 3053 "Miscellaneous Cast-in-Place Concrete."
- D. Anchor equipment to concrete base as follows:
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Touchup: Comply with requirements in Section 09 9113 "Exterior Painting" Section 09 9123 "Interior Painting" and Section 09 9600 "High-Performance Coatings" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION

SECTION 26 0533

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings.
 - 2. Nonmetallic conduits and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Nonmetal wireways and auxiliary gutters.
 - 5. Surface raceways.
 - 6. Boxes, enclosures, and cabinets.
 - 7. Handholes and boxes for exterior underground cabling.

1.3 **DEFINITIONS**

- A. ARC: Aluminum rigid conduit.
- B. GRC: Galvanized rigid steel conduit.
- C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 - 1. Structural members in paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0533 - 1

- B. Qualification Data: For professional engineer.
- C. Seismic Qualification Data: Certificates, for enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 - 4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.
- D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

- A. Metal Conduit:
 - 1. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. GRC: Comply with ANSI C80.1 and UL 6.
 - 3. ARC: Comply with ANSI C80.5 and UL 6A.
 - 4. IMC: Comply with ANSI C80.6 and UL 1242.
 - 5. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - a. Comply with NEMA RN 1.
 - b. Coating Thickness: 0.040 inch, minimum.
 - 6. EMT: Comply with ANSI C80.3 and UL 797.
 - 7. FMC: Comply with UL 1; zinc-coated steel or aluminum.
 - 8. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- B. Metal Fittings:
 - 1. Comply with NEMA FB 1 and UL 514B.
 - 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. Fittings, General: Listed and labeled for type of conduit, location, and use.
 - 4. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
 - 5. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: compression.
 - 6. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 - 7. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

C. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities 17-13 OSU, College of Osteopathic Medicine at Cherokee Nation 26 0533 - 2 FOR ELECTRICAL Childers Architect SYSTEMS 07-26-19 having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

- Α. Nonmetallic Conduit:
 - Listing and Labeling: Nonmetallic conduit shall be listed and labeled as defined in 1. NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Fiberglass:
 - Comply with NEMA TC 14. a.
 - b. Comply with UL 2515 for aboveground raceways.
 - c. Comply with UL 2420 for belowground raceways.
 - 3. ENT: Comply with NEMA TC 13 and UL 1653.
 - RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise 4. indicated.
 - 5. LFNC: Comply with UL 1660.
 - Rigid HDPE: Comply with UL 651A. 6.
 - Continuous HDPE: Comply with UL 651A. 7.
 - 8. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D 3485.
 - 9. RTRC: Comply with UL 2515A and NEMA TC 14.
- Β. Nonmetallic Fittings:
 - Fittings, General: Listed and labeled for type of conduit, location, and use. 1.
 - Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and 2. material.
 - a. Fittings for LFNC: Comply with UL 514B.
 - 3. Solvents and Adhesives: As recommended by conduit manufacturer.

METAL WIREWAYS AND AUXILIARY GUTTERS 2.3

- Α. Description: Sheet metal, complying with UL 870 and NEMA 250, (enclosure suitable to environment) unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- В. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- C. Wireway Covers: Hinged, Flanged-and-gasketed type unless otherwise indicated.
- Finish: Manufacturer's standard enamel finish. D.

2.4 NONMETALLIC WIREWAYS AND AUXILIARY GUTTERS

- A. Listing and Labeling: Nonmetallic wireways and auxiliary gutters shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Description: Fiberglass polyester, extruded and fabricated to required size and shape, without holes or knockouts. Cover shall be gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections shall be flanged and have stainless-steel screws and oil-resistant gaskets.
- C. Description: PVC, extruded and fabricated to required size and shape, and having snap-on cover, mechanically coupled connections, and plastic fasteners.
- D. Fittings and Accessories: Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.
- E. Solvents and Adhesives: As recommended by conduit manufacturer.

2.5 SURFACE RACEWAYS

- A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect unless otherwise indicated.
- C. Surface Nonmetallic Raceways: not allowed unless noted otherwise.

2.6 BOXES, ENCLOSURES, AND CABINETS

- A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.
- D. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
- E. Metal Floor Boxes: refer to drawings.
- F. Nonmetallic Floor Boxes: refer to drawings
- G. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- H. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 90 lb.

17-13 OSU, College of Osteopathic Medicine atRACEWAYS AND BOXESCherokee Nation26 0533 - 4FOR ELECTRICALChilders ArchitectSYSTEMS07-26-19SYSTEMS

- 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- I. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- J. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum or galvanized, cast iron (suitable to environment) with gasketed cover.
- K. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- L. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
- M. Gangable boxes are allowed.
- N. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, NEMA enclosure type suitable to environment with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Fiberglass.
 - 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
- O. Cabinets:
 - 1. NEMA 250, NEMA enclosure suitable to environment, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.
 - 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.7 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. General Requirements for Handholes and Boxes:
 - 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 - 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 - 1. Standard: Comply with SCTE 77.
 - 2. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
 - 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 - 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 5. Cover Legend: Molded lettering, "ELECTRIC.".
 - 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts

17-13 OSU, College of Osteopathic Medicine atRACEWAYS AND BOXESCherokee Nation26 0533 - 5FOR ELECTRICALChilders ArchitectSYSTEMS07-26-19

for secure, fixed installation in enclosure wall.

- 7. Handholes 12 Inches Wide by 24 Inches Long and Larger: Have inserts for cable racks and pulling-in irons installed before concrete is poured.
- C. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with frame and covers of reinforced concrete.
 - 1. Standard: Comply with SCTE 77.
 - 2. Color of Frame and Cover: Gray.
 - 3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
 - 4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 - 5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 6. Cover Legend: Molded lettering, "ELECTRIC.".
 - 7. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
 - 8. Handholes 12 Inches Wide by 24 Inches Long and Larger: Have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.8 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

- A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC.
 - 2. Concealed Conduit, Aboveground: EMT.
 - 3. Underground Conduit: RNC, Type EPC-80-PVC, direct buried.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 4.
 - 6. Feeders to Variable Speed Drive: Metallic (EMT or GRC)
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT unless noted otherwise.
 - 3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:

a. Loading dock. 17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0533 - 6

- b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
- c. Mechanical rooms.
- d. Gymnasiums.
- 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
- 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
- 6. Damp or Wet Locations: GRC.
- 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.
- 8. Feeders to Variable Speed Drive: Metallic (EMT or GRC)
- C. Minimum Raceway Size: 1/2-inch trade size. 3/4-inch minimum for school and healthcare facilities.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 - 3. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10.
 - 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.
- F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
- G. Install surface raceways only where indicated on Drawings.
- H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation.
- D. Comply with requirements in Section 26 0529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

17-13 OSU, College of Osteopathic Medicine at		RACEWAYS AND BOXES
Cherokee Nation	26 0533 - 7	FOR ELECTRICAL
Childers Architect		SYSTEMS
07-26-19		

- F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- H. Support conduit within 12 inches of enclosures to which attached.
- I. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-footintervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of 1 inch of concrete cover in all directions.
 - 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 - 5. Change from ENT to GRC before rising above floor. Elbows shall be GRC. Continue GRC until conduit passes through the slab prior to transition back to ENT.
 - 6. Provide coated GRC for all bends greater than 30 degrees, including the 90-degree elbows below grade and the entire vertical risers for transitions from below to above grade or above-slab."
- J. Stub-ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
- M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- N. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- O. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- P. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- Q. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
 College of Octoonsthip Medicine at PACEWAYS AND POYES.

17-13 OSU, College of Osteopathic Medicine at		RACEWAYS AND BOXES
Cherokee Nation	26 0533 - 8	FOR ELECTRICAL
Childers Architect		SYSTEMS
07-26-19		

- R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- S. Surface Raceways:
 - 1. Install surface raceway with a minimum 2-inchradius control at bend points.
 - 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- T. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- U. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - 3. Where otherwise required by NFPA 70.
- V. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- W. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 - c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 - d. Attics: 135 deg F temperature change.
 - 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
 - 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 - 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0533 - 9

- X. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- Y. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- Z. Surface mount boxes at window mullions at locations indicated on drawings. Use of MC cable is acceptable. Conceal raceways and conductors within mullion cavity. Splices within the mullions are not allowed.
- AA. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- BB. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- CC. Locate boxes so that cover or plate will not span different building finishes.
- DD. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- EE. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- FF. Set metal floor boxes level and flush with finished floor surface.
- GG. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

- A. Direct-Buried Conduit:
 - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 31 2000 "Earth Moving" for pipe less than 6 inches in nominal diameter.
 - 2. Install backfill as specified in Section 31 2000 "Earth Moving."
 - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 31 2000 "Earth Moving."
 - 4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 - 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0533 - 10

- a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
- b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
- 6. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits but a minimum of 6 inches below grade. Align planks along centerline of conduit.
- 7. Underground Warning Tape: Comply with requirements in Section 26 0553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.
- D. Install handholes with bottom below frost line, below grade.
- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.
- F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 0544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 07 8413 "Penetration Firestopping."

3.7 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0533 - 11

- 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
- 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION

SECTION 26 0539

UNDERFLOOR RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Flat-top, single- or multichannel, underfloor raceways.
 - 2. Flush, flat-top underfloor raceways.
 - 3. Cellular metal underfloor raceways.
 - 4. Trench-type underfloor raceways.
 - 5. Electrical connection components for precast cellular concrete floor decks.
 - 6. Electrical connection components for electrified cellular steel floor decks.
 - 7. Supports, raceway fittings, and hardware.
 - 8. Junction boxes.
 - 9. Service fittings.
- B. Related Requirements:
 - 1. Section 03 4100 "Precast Structural Concrete" for precast concrete units used as cellular concrete floor raceways.
 - 2. Section 05 3100 "Steel Decking" for rough-in of underfloor duct distribution system.

1.3 DEFINITIONS

A. Activation: Nomenclature used by some manufacturers for a service fitting.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include finishes, construction details, material descriptions, dimensions, and profiles for underfloor raceway components, fittings, and accessories.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For underfloor raceways.
 - 1. Include floor plans, elevations, sections, and details.
 - 2. Detail fabrication and assembly of underfloor raceways.

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation26 0539 - 1Childers Architect07-26-19

- a. Identify components and accessories, such as expansion-joint assemblies, straight raceway lengths, preset and afterset inserts, and service fittings.
- b. Detail preparation and installation methods and instructions.
- c. Provide dimensions locating raceway header and distribution elements. Include spacing between preset inserts and between preset inserts and ends of duct runs, walls, columns, junction boxes, and header duct connections.
- d. Provide raceway fill charts for each duct size provided for each conductor size the duct is identified to accept. Provide separate charts for power and communication conductors and cables.
- e. Show connections between raceway elements and relationships between components and adjacent structural and architectural elements, including slab reinforcement, floor finish work, permanent partitions, expansion joints, and pretensioning or post-tensioning components.
- f. Indicate height of preset inserts, junction boxes, and raceways coordinated with depth of concrete slab and floor fill.
- g. Indicate thickening of slabs where required for adequate encasement of raceway components.
- h. Document coordination of exposed components with floor-covering materials to ensure that fittings and trim are suitable for indicated floor-covering material.
- i. Revise locations from those indicated in the Contract Documents, as required to suit field conditions and to ensure a functioning layout. Identify proposed deviations from the Contract Documents.
- j. Show details of connections and terminations of underfloor raceways at panelboards and communication terminal equipment in equipment rooms, wire closets, and similar spaces.
- k. Identify those cells of cellular floor deck that are to be connected and fitted for the following underfloor distribution:
 - 1) Power.
 - 2) Voice.
 - 3) Data.
 - 4) Signal.
 - 5) Communications.
- C. Samples: For each underfloor raceway product, in specified finish, including the following:
 - 1. Service fittings and flush and recessed outlet and junction-box covers.
 - 2. A section of each service raceway configuration, with specified preset insert and service fitting installed.
 - 3. A junction box of each size and type for use with underfloor raceway.
 - 4. A section of each header raceway configuration, complete with provisions for connection with service raceway.
 - 5. A section of trench-type raceway, complete with cover and required trim.
 - 6. A junction box of each size and type for use with trench-type raceway, complete with cover and trim.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For underfloor raceways, to include in emergency, operation,

17-13 OSU, College of Osteopathic Medicine at		UNDERFLOOR
Cherokee Nation	26 0539 - 2	RACEWAYS FOR
Childers Architect		ELECTRICAL SYSTEMS
07-26-19		

and maintenance manuals.

- 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - a. Manufacturer's written instructions for locating preset inserts and for installing afterset inserts.
- B. Project Record Documents: Submit final as-built Drawings, indicating dimensioned locations for all ducts, junction boxes, and preset inserts. Typical spacing designation shall be accepted only for preset insert spacing along a continuous length of duct.

1.7 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Comply with UL 884.
- C. Comply with NFPA 70.
- D. Mockup: Install a mockup for evaluation of surface preparation and duct installation techniques and workmanship.
 - 1. Mockup area shall be designated by Architect.
 - 2. Do not proceed with remaining work until workmanship, appearance, and performance are approved.
 - 3. Repair or reinstall mockup area as required to produce acceptable work.
 - 4. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 5. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Jacks, Receptacles, and Fittings:
 - 1. Comply with Section 26 2726 "Wiring Devices" for power outlets, faceplates, and connectors.
 - 2. Comply with Division 27 Specifications for twisted pair jacks, outlets, assemblies, and faceplates.
 - 3. Comply with Division 27 Specifications for optical fiber jacks, outlets, assemblies, and faceplates.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0539 - 3

4. Comply with Division 27 Specifications for coaxial jacks, outlets, assemblies, and faceplates.

2.2 TRENCH-TYPE UNDERFLOOR RACEWAYS

- A. Description: Trench-type raceways used as header or feeder raceways to serve service raceways.
- B. Source Limitations: Obtain underfloor raceway components for each system through single source from single manufacturer.
- C. Trench: Steel, shop or factory welded and fabricated to indicated sizes. Include the following features:
 - 1. Slab Depth Adjustment: Minimum of minus 1/8 inch to plus 5/8 inch before and during concrete placement.
 - 2. Cover Supports: Height adjustable, with leveling screws to rigidly support cover assembly.
 - 3. Screed Strip: Extruded aluminum along both edges at proper elevation without requiring shim material.
 - 4. Trim Strip: Select to accommodate floor finish material.
 - 5. Partitions: Arranged to separate channels and isolate wiring of different systems.
 - 6. Grommeted openings in active floor cells or service raceways.
 - 7. Manufacturer's standard corrosion-resistant finish, applied after fabrication.
- D. Cover Plates: Removable, steel plates, 1/4 inch thick, each weighing 60 lb or less with full gasket attached to side units. Fabricate intermediate supports to limit unsupported spans to 15 inches or less. Fabricate covers with appropriate depth recess to receive indicated floor finish.

2.3 SUPPORTS, RACEWAY FITTINGS, AND HARDWARE

- A. Source Limitations: Obtain underfloor raceway supports, fittings, and hardware components for each system through single source from single manufacturer.
- B. Supports, fittings, and hardware shall be compatible with raceway and outlet system and shall be listed for use with raceway systems and components delivered.
- C. Supports: Adjustable for height and arranged to maintain alignment and spacing of raceways during concrete placement. Include hold-down straps.
- D. Raceway Fittings: Couplings, expansion-joint sleeves, cross-under offsets, vertical and horizontal elbows, grounding screws, adapters, end caps, and other fittings suitable for use with basic components to form a complete installation.

2.4 JUNCTION BOXES

- A. Description: Raceway manufacturer's standard enclosure for indicated type, quantity, arrangement, and configuration of raceways at each raceway junction, intersection, and access location. Include the following accessories and features:
 - 1. Mounting brackets.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0539 - 4

- 2. Escutcheons and holders to accommodate surrounding floor covering.
- 3. Means for leveling and height adjustment more than 3/8 inch before and after concrete is placed.
- 4. Boxes shall withstand a minimum 300-lb concentrated load. Internal supports shall be provided as needed to meet this requirement.
- 5. All boxes shall provide 2-inch-minimum bend radius for data and communication cables.
- 6. Raceway Openings: For underfloor raceways and conduits arranged to accommodate raceway layout.
- 7. Covers shall have appropriate depth recess to receive specific floor finish material.
- 8. Partitions to separate wiring of different systems.

2.5 SERVICE FITTINGS/ACTIVATIONS

- A. Source Limitations: Obtain underfloor raceway service fittings and hardware for each system through single source from single manufacturer.
- B. Exposed Parts Finish: To be approved by Architect.
- C. Flush, Single-System Service Fitting for Rectangular Inserts: Include mounting, hinged cover, and trim to support and provide access to connector, jack, or receptacle devices mounted flush with floor within insert.
 - 1. Connector, Jack, and Receptacle Devices: Modular type.
 - 2. Power Receptacle Rating: 20 A, 120 V unless otherwise indicated.
 - 3. Recess-Mounted Service Fitting: Modular fittings compatible with preset inserts. Include device plates for indicated systems and provisions for receptacles, jacks, and connectors. Include hinged flush covers with recessed depth to match thickness of floor finish material. Provide for internally mounted receptacle- and communication-jack and connector assemblies.
 - a. Duplex receptacle.
 - b. Duplex data jacks.
 - c. Double duplex receptacles.
 - d. Duplex receptacle and duplex data jacks.
 - e. Fiber-optic cable connector.
- D. Surface-Mounted Service Fitting: Modular pedestal type, with locking attachment matched to insert floor opening.
 - 1. Power-outlet, double-faced, surface-mounted unit for duplex receptacle on both sides.
 - 2. Power-outlet, single-faced, surface-mounted unit for duplex receptacle on one side.
 - 3. Communication-outlet, double-faced, surface-mounted unit.
 - a. Include bushed openings on both sides; 1-inch minimum diameter; insulated with nonconducting material.
 - b. Include provisions for modular dual fiber-optic connector assembly on both sides.
 - c. Include provisions for modular dual jack-connector assembly, rated for Category 6 on both sides.
 - 4. Communication-outlet, single-faced, surface-mounted unit with bushed opening on one side; 1-inch minimum diameter; insulated with nonconducting material.
 - 5. Combination surface-mounted unit for duplex receptacle on one side and with communication cable connection provision on opposite side.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0539 - 5

- a. Communication Side: Include bushed opening; 1-inch minimum diameter; insulated with nonconducting material.
- b. Communication Side: Include provisions for modular dual jack-connector assembly, rated for Category 6.
- 6. Flush-Mounted Service Fittings: Modular fittings compatible with preset inserts and shall include covers, provisions for receptacles jacks and connector assemblies and wiring extensions to wall-mounted outlets, and associated device plates for indicated systems. Include flush covers, recessed to suit floor finish material.
- 7. Indicate types and locations of devices on Drawings.
 - a. Duplex convenience receptacle.
 - b. Duplex data outlets.
 - c. Double duplex convenience receptacles.
 - d. Duplex convenience receptacle and duplex data outlets.
 - e. Double duplex data outlets.
 - f. Duplex fiber-optic communication connector.
 - g. Wiring-Extension Service Fittings: Arrangement of brackets and mountings to support and provide access to wiring or cabling of a cell, and to connect the cable or raceway that extends the system to an individual wall outlet. Provide for connection of RMC for power extensions, and ENT optical fiber/communication cable raceway for communication system extensions.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install raceways aligned and leveled and, unless otherwise indicated, parallel or perpendicular to floor supports.
- B. Maintain arrangement of conductor services throughout the raceway system.
- C. Install a concrete mud slab for support of cellular metal, flush duct, or trench duct raceway. Construct mud slab with wire mesh in the top 1 inch of concrete.
- D. Install a vapor barrier between the cellular metal raceway and a substrate in contact with earth.
- E. Arrange supports to attain proper elevation, alignment, and spacing of raceways. Fasten supports securely at ends and at intervals not to exceed 60 inches, to prevent movement during concrete pour.
- F. Level raceway components with finished slab and make adjustments in raceway component elevation to accommodate indicated floor finishes.

26 0539 - 6

- G. Junction Boxes: Install tops level and flush with finished floor. Install blank closure plates or plugs to close unused junction-box openings. Grout boxes in place to prevent movement during construction. Place top covers in inverted position during construction to prevent damage to surface of cover. Reinstall covers in proper position prior to final acceptance of the Work.
- H. Install preset inserts per manufacturer's instructions.
- I. Adjust supports to maintain a 1/8- to 3/8-inch finished concrete cover over preset inserts.
- J. Remove burrs, sharp edges, dents, and mechanical defects.
- K. Cap or plug boxes, insert- and service-fitting openings, and open ends of raceways.
- L. Install expansion fittings with suitable bonding jumper where raceways cross building expansion joints.
- M. Bond underfloor raceway components to create a continuous bonding path.
- N. Seal raceways, cells, junction boxes, and inserts to prevent water, concrete, or foreign matter from entering raceways before and during pouring slab or placing fill. Tape joints or seal with compound, as recommended in writing by underfloor raceway manufacturer.
- O. Install a marker at the center of the last insert of each cell and channel of each straight run of metal underfloor service raceway to locate the insert and identify the system.
 - 1. Install markers at last inserts on both sides of permanent walls and at first inserts adjacent to each junction box.
 - 2. Install markers flush at screed line before pouring slab or placing fill. Extend marker with grommeted screw when floor covering is placed. Do not extend through carpet.
 - 3. Use slotted-head screw to identify electrical power; use Phillips-head screw to identify conventional communications.
 - 4. Use another distinctive screw head to identify third system, such as special-purpose wiring.
- P. Protect underfloor raceway system from damage. Do not use the installed duct system as working platforms or walkways. Do not allow equipment or heavy traffic over duct during construction period, without first installing ramps over the duct. Ramps shall be designed so that imposed loads are not transferred to the duct. Components of the system that are damaged during construction shall be replaced.
- Q. Install concrete surrounding underfloor raceways according to Section 03 3000 "Cast-in-Place Concrete."
- R. Afterset Inserts: Cut, hole saw, and drill slab and raceways to allow for installation at locations indicated on plans.
- S. Wiring shall comply with Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables" and NFPA 70 requirements for wet locations.
 - 1. Install wiring from outlet insert toward junction boxes, then to termination at panel.
 - 2. Splices: All splices and taps shall be made in junction boxes. No splices or taps shall be made in raceways or outlet inserts.

26 0539 - 7

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Perform visual inspection of interior of each section of trench raceway to verify absence of dirt, dust, construction debris, and moisture. Replace damaged and malfunctioning components.
 - 2. Prior to and after concrete pour, perform point-to-point tests of ground continuity and resistance of ground path between the most remote accessible fitting on each branch of each underfloor raceway system and the main electrical distribution grounding system.
 - a. Determine cause and perform correction of any point-to-point resistance value that exceeds 0.05 ohms.
 - b. Comply with NETA Acceptance Testing Specification about safety, suitability of test equipment, test instrument calibration, and test report and records.
- C. Prepare test and inspection reports.

3.4 CLEANING

A. Clean and swab out underfloor raceways, inserts, and junction boxes after finish has been applied to floor slab, and remove foreign material, dirt, and moisture. Leave interiors clean and dry.

END OF SECTION

SECTION 26 0543

UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings, including GRC and PVC-coated steel conduit.
 - 2. Rigid nonmetallic duct.
 - 3. Flexible nonmetallic duct.
 - 4. Duct accessories.
 - 5. Precast concrete handholes.
 - 6. Polymer concrete handholes and boxes with polymer concrete cover.
 - 7. Fiberglass handholes and boxes with polymer concrete cover.
 - 8. Fiberglass handholes and boxes.
 - 9. High-density plastic boxes.
 - 10. Precast manholes.
 - 11. Cast-in-place manholes.
 - 12. Utility structure accessories.

1.3 **DEFINITIONS**

- A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.
- B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.
- C. Duct Bank:
 - 1. Two or more ducts installed in parallel, with or without additional casing materials.
 - 2. Multiple duct banks.
- D. GRC: Galvanized rigid (steel) conduit.
- E. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0543 - 1

- 1. Include duct-bank materials, including spacers and miscellaneous components.
- 2. Include duct, conduits, and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
- 3. Include accessories for manholes, handholes, boxes, and other utility structures.
- 4. Include underground-line warning tape.
- 5. Include warning planks.
- B. Shop Drawings:
 - 1. Precast or Factory-Fabricated Underground Utility Structures:
 - a. Include plans, elevations, sections, details, attachments to other work, and accessories.
 - b. Include duct entry provisions, including locations and duct sizes.
 - c. Include reinforcement details.
 - d. Include frame and cover design and manhole chimneys.
 - e. Include ladder/step details.
 - f. Include grounding details.
 - g. Include dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
 - h. Include joint details.
 - 2. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 - a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 - b. Include duct entry provisions, including locations and duct sizes.
 - c. Include cover design.
 - d. Include grounding details.
 - e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.5 INFORMATIONAL SUBMITTALS

- A. Duct and Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures.
 - 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
 - 2. Drawings shall be signed and sealed by a qualified professional engineer.
- B. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.
- C. Product Certificates: For concrete and steel used in precast concrete manholes and handholes, as required by ASTM C 858.
- D. Source quality-control reports.
- E. Field quality-control reports.

1.6 MAINTENANCE MATERIALS SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
- B. Furnish cable-support stanchions, arms, insulators, and associated fasteners in quantities equal to 5 percent of quantity of each item installed.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.

1.8 FIELD CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Construction Manager and Owner no fewer than two days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Construction Manager's and Owner's written permission.
- B. Ground Water: Assume ground-water level is at grade level unless a lower water table is noted on Drawings.
- C. Ground Water: Assume ground-water level is 36 inches (900 mm) below ground surface unless a higher water table is noted on Drawings.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND FITTINGS

- A. GRC: Comply with ANSI C80.1 and UL 6.
- B. Coated Steel Conduit: PVC-coated GRC.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch (1 mm), minimum.
- C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 RIGID NONMETALLIC DUCT

A. Underground Plastic Utilities Duct: Type EPC-80-PVC and Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0543 - 3

- B. Underground Plastic Utilities Duct: Type DB-60 PVC and Type DB-120 PVC RNC, complying with NEMA TC 6 & 8 and ASTM F 512 for direct burial, with matching fittings complying with NEMA TC 9 by same manufacturer as duct.
- C. Underground Plastic Utilities Duct: Type EB-20 PVC RNC, complying with NEMA TC 6 & 8, ASTM F 512, and UL 651, with matching fittings complying with NEMA TC 9 by same manufacturer as duct.
- D. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
- E. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 FLEXIBLE NONMETALLIC DUCTS

- A. HDPE Duct: Type EPEC-40 HDPE and Type EPEC-80 HDPE, complying with NEMA TC 7 and UL 651A.
 - 1. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.4 DUCT ACCESSORIES

A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.

1.

- B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 26 0553 "Identification for Electrical Systems."
- C. Concrete Warning Planks: Nominal 12 by 24 by 3 inches (300 by 600 by 75 mm) in size, manufactured from 6000-psi (41-MPa) concrete.
 - 1. Color: Red dye added to concrete during batching.
 - 2. Mark each plank with "ELECTRIC" in 2-inch- (50-mm-) high, 3/8-inch- (10-mm-) deep letters.

2.5 PRECAST CONCRETE HANDHOLES AND BOXES

- A. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.
- B. Comply with ASTM C 858 for design and manufacturing processes.
- C. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
- D. Frame and Cover: Weatherproof steel frame, with steel cover with recessed cover hook eyes

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation26 0543 - 4Childers Architect07-26-19

and tamper-resistant, captive, cover-securing bolts.

- E. Frame and Cover: Weatherproof steel frame, with hinged steel access door assembly with tamper-resistant, captive, cover-securing bolts.
 - 1. Cover Hinges: Concealed, with hold-open ratchet assembly.
 - 2. Cover Handle: Recessed.
- F. Frame and Cover: Weatherproof aluminum frame with hinged aluminum access door assembly with tamper-resistant, captive, cover-securing bolts.
 - 1. Cover Hinges: Concealed, with hold-open ratchet assembly.
 - 2. Cover Handle: Recessed.
- G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- H. Cover Legend: Molded lettering, "ELECTRIC."
- I. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
- J. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
 - 1. Extension shall provide increased depth of 12 inches (300 mm)
 - 2. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.
- K. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.
- L. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct, plus an additional 12 inches (300 mm) vertically and horizontally to accommodate alignment variations.
 - 1. Splayed location.
 - 2. Knockout panels shall be located no less than 6 inches (150 mm) from interior surfaces of walls, floors, or frames and covers of handholes, but close enough to corners to facilitate racking of cables on walls.
 - 3. Knockout panel opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct.
 - 4. Knockout panels shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.
 - 5. Knockout panels shall be 1-1/2 to 2 inches (38 to 50 mm) thick.
- M. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 - 1. Type and size shall match fittings to duct to be terminated.
 - 2. Fittings shall align with elevations of approaching duct and be located near interior corners of handholes to facilitate racking of cable.
- N. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

26 0543 - 5

2.6 POLYMER CONCRETE HANDHOLES AND BOXES WITH POLYMER CONCRETE COVER

- A. Description: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray or Green.
- D. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "ELECTRIC."
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.7 FIBERGLASS HANDHOLES AND BOXES WITH POLYMER CONCRETE FRAME AND COVER

- A. Description: Sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray or Green.
- D. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "ELECTRIC."
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure,

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0543 - 6

fixed installation in enclosure wall.

- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.8 FIBERGLASS HANDHOLES AND BOXES

- A. Description: Molded of fiberglass-reinforced polyester resin, with covers made of fiberglass.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray or Green.
- D. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "ELECTRIC."
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.9 HIGH-DENSITY PLASTIC BOXES

- A. Description: Injection molded of HDPE or copolymer-polypropylene. Cover shall be made of plastic.
- B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- C. Color: Gray or Green.
- D. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
- E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0543 - 7

- F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- G. Cover Legend: Molded lettering, "ELECTRIC."
- H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or endbell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
- I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
- J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.10 PRECAST MANHOLES

- A. Description: One-piece units and units with interlocking mating sections, complete with accessories, hardware, and features.
- B. Comply with ASTM C 858.
- C. Structural Design Loading: Comply with requirements in "Underground Enclosure Application" Article.
- D. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct, plus an additional 12 inches (300 mm) vertically and horizontally to accommodate alignment variations.
 - 1. Splayed location.
 - 2. Knockout panels shall be located no less than 6 inches (150 mm) from interior surfaces of walls, floors, or roofs of manholes, but close enough to corners to facilitate racking of cables on walls.
 - 3. Knockout panel opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct.
 - 4. Knockout panel shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.
 - 5. Knockout panels shall be 1-1/2 to 2 inches (38 to 50 mm) thick.
- E. Duct Entrances in Manhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 - 1. Type and size shall match fittings to duct to be terminated.
 - 2. Fittings shall align with elevations of approaching duct and be located near interior corners of manholes to facilitate racking of cable.
- F. Ground Rod Sleeve: Provide a 3-inch (75-mm) PVC sleeve in manhole floors 2 inches (50 mm) from the wall adjacent to, but not underneath, the duct entering the structure.
- G. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

26 0543 - 8

2.11 **CAST-IN-PLACE MANHOLES**

- Description: Underground utility structures, constructed in place, complete with accessories, Α. hardware, and features. Include concrete knockout panels for duct entrance and sleeve for around rod.
- В. Materials: Comply with ASTM C 858 and with Section 03 3000 "Cast-in-Place Concrete."
- C. Structural Design Loading: As specified in "Underground Enclosure Application" Article.

2.12 UTILITY STRUCTURE ACCESSORIES

- Accessories for Utility Structures: Utility equipment and accessory items used for utility structure Α. access and utility support, listed and labeled for intended use and application.
- Β. Manhole Frames, Covers, and Chimney Components: Comply with structural design loading specified for manhole.
 - 1. Frame and Cover: Weatherproof, gray cast iron complying with ASTM A 48/A 48M, Class 30B with milled cover-to-frame bearing surfaces; diameter, 26 inches (660 mm).
 - Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50. a.
 - Special Covers: Recess in face of cover designed to accept finish material in b. paved areas.
 - 2. Cover Legend: Cast in. Selected to suit system.
 - Legend: "ELECTRIC-LV" for duct systems with power wires and cables for a. systems operating at 600 V and less.
 - Legend: "ELECTRIC-HV" for duct systems with medium-voltage cables. b.
 - 3. Manhole Chimney Components: Precast concrete rings with dimensions matched to those of roof opening.
 - Mortar for Chimney Ring and Frame and Cover Joints: Comply with ASTM C 270, a. Type M, except for quantities less than 2.0 cu. ft. (60 L) where packaged mix complying with ASTM C 387, Type M, may be used.
 - b. Seal joints watertight using preformed plastic or rubber complying with ASTM C 990. Install sealing material according to sealant manufacturers' written instructions.
- C. Manhole Sump Frame and Grate: ASTM A 48/A 48M, Class 30B, gray cast iron.
- D. Pulling Eyes in Concrete Walls: Eyebolt with reinforcing-bar fastening insert, 2-inch- (50-mm-) diameter eye, and 1-by-4-inch (25-by-100-mm) bolt.
 - 1. Working Load Embedded in 6-Inch (150-mm), 4000-psi (27.6-MPa) Concrete: 13,000-lbf (58-kN) minimum tension.
- Pulling Eyes in Nonconcrete Walls: Eyebolt with reinforced fastening, 1-1/4-inch- (31-mm-) Ε. diameter eye, rated 2500-lbf (11-kN) minimum tension.
- F. Pulling-in and Lifting Irons in Concrete Floors: 7/8-inch- (22-mm-) diameter, hot-dip galvanized,

17-13 OSU, College of Osteopathic Medicine at		UNDERGROUND DUCTS
Cherokee Nation	26 0543 - 9	AND RACEWAYS FOR
Childers Architect		ELECTRICAL SYSTEMS
07-26-19		

bent steel rod; stress relieved after forming; and fastened to reinforcing rod. Exposed triangular opening.

- 1. Ultimate Yield Strength: 40,000-lbf (180-kN) shear and 60,000-lbf (270-kN) tension.
- G. Bolting Inserts for Concrete Utility Structure Cable Racks and Other Attachments: Flared, threaded inserts of noncorrosive, chemical-resistant, nonconductive thermoplastic material; 1/2inch (13-mm) ID by 2-3/4 inches (69 mm) deep, flared to 1-1/4 inches (31 mm) minimum at base.
 - 1. Tested Ultimate Pullout Strength: 12,000 lbf (53 kN) minimum.
- H. Ground Rod Sleeve: 3-inch (75-mm) PVC sleeve in manhole floors 2 inches (50 mm) from the wall adjacent to, but not underneath, the ducts routed from the facility.
- I. Expansion Anchors for Installation after Concrete Is Cast: Zinc-plated, carbon-steel-wedge type with stainless-steel expander clip with 1/2-inch (13-mm) bolt, 5300-lbf (24-kN) rated pullout strength, and minimum 6800-lbf (30-kN) rated shear strength.
- J. Cable Rack Assembly: Steel, hot-rolled galvanized, except insulators.
 - 1. Stanchions: T-section or channel; 2-1/4-inch (56-mm) nominal size; punched with 14 holes on 1-1/2-inch (38-mm) centers for cable-arm attachment.
 - 2. Arms: 1-1/2 inches (38 mm) wide, lengths ranging from 3 inches (75 mm) with 450-lb (204-kg) minimum capacity to 18 inches (450 mm) with 250-lb (114-kg) minimum capacity. Arms shall have slots along full length for cable ties and be arranged for secure mounting in horizontal position at any vertical location on stanchions.
 - 3. Insulators: High-glaze, wet-process porcelain arranged for mounting on cable arms.
- K. Cable Rack Assembly: Nonmetallic. Components fabricated from nonconductive, fiberglassreinforced polymer.
 - 1. Stanchions: Nominal 36 inches (900 mm) high by 4 inches (100 mm) wide, with minimum of nine holes for arm attachment.
 - 2. Arms: Arranged for secure, drop-in attachment in horizontal position at any location on cable stanchions, and capable of being locked in position. Arms shall be available in lengths ranging from 3 inches (75 mm) with 450-lb (204-kg) minimum capacity to 20 inches (500 mm) with 250-lb (114-kg) minimum capacity. Top of arm shall be nominally 4 inches (100 mm) wide, and arm shall have slots along full length for cable ties.
- L. Duct-Sealing Compound: Nonhardening, safe for contact with human skin, not deleterious to cable insulation, and workable at temperatures as low as 35 deg F (2 deg C). Capable of withstanding temperature of 300 deg F (150 deg C) without slump and adhering to clean surfaces of plastic ducts, metallic conduit, conduit and duct coatings, concrete, masonry, lead, cable sheaths, cable jackets, insulation materials, and common metals.
- M. Fixed Manhole Ladders: Arranged for attachment to roof or wall and floor of manhole. Ladder and mounting brackets and braces shall be fabricated from nonconductive, structural-grade, fiberglass-reinforced resin.
- N. Portable Manhole Ladders: UL-listed, heavy-duty fiberglass specifically designed for portable use for access to electrical manholes. Minimum length equal to distance from deepest manhole floor to grade plus 36 inches (900 mm). One required.

O. Cover Hooks: Light duty, designed for lifts less than 60 lbf (270 N). Two required.

17-13 OSU, College of Osteopathic Medicine at		UNDERGROUND DUCTS
Cherokee Nation	26 0543 - 10	AND RACEWAYS FOR
Childers Architect		ELECTRICAL SYSTEMS
07-26-19		

2.13 SOURCE QUALITY CONTROL

- A. Test and inspect precast concrete utility structures according to ASTM C 1037.
- B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by an independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate layout and installation of duct, duct bank, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.
- B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to manholes and handholes, and as approved by Architect.
- C. Clear and grub vegetation to be removed, and protect vegetation to remain according to Section 31 1000 "Site Clearing." Remove and stockpile topsoil for reapplication according to Section 31 1000 "Site Clearing."

3.2 UNDERGROUND DUCT APPLICATION

- A. Duct for Electrical Cables More Than 600 V: Type EPC-80-PVC or Type EPC-40-PVC or Type EB-20-PVC RNC, concrete-encased unless otherwise indicated.
- B. Duct for Electrical Feeders 600 V and Less: Type EPC-80-PVC or Type EPC-40-PVC or Type EB-20-PVC RNC, concrete-encased unless otherwise indicated.
- C. Duct for Electrical Feeders 600 V and Less: Type EPC-80-PVC or Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- D. Duct for Electrical Branch Circuits: Type EPC-80-PVC or Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- E. Bored Underground Duct: Type EPEC-40-HDPE or Type EPEC-80-HDPE unless otherwise indicated.
- F. Underground Ducts Crossing Paved Paths, Walks and Driveways, Roadways and Railroads:

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation26 0543 - 11Childers Architect07-26-19

Type EPC-40 PVC RNC, encased in reinforced concrete.

G. Stub-ups: Concrete-encased GRC.

3.3 UNDERGROUND ENCLOSURE APPLICATION

- A. Handholes and Boxes for 600 V and Less:
 - 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-10 structural load rating.
 - 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Fiberglass enclosures with polymer concrete frame and cover, SCTE 77, Tier 15 structural load rating.
 - 3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Heavy-duty fiberglass units with polymer concrete frame and cover, SCTE 77, Tier 8 structural load rating.
 - 4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf (13 345-N) vertical loading.
 - 5. Cover design load shall not exceed the design load of the handhole or box.
- B. Manholes: Precast or cast-in-place concrete.
 - 1. Units Located in Roadways and Other Deliberate Traffic Paths by Heavy or Medium Vehicles: H-20 structural load rating according to AASHTO HB 17.
 - 2. Units Not Located in Deliberate Traffic Paths by Heavy or Medium Vehicles: H-10 load rating according to AASHTO HB 17.

3.4 EARTHWORK

- A. Excavation and Backfill: Comply with Section 31 2000 "Earth Moving," but do not use heavyduty, hydraulic-operated, compaction equipment.
- B. Restoration: Replace area immediately after backfilling is completed or after construction vehicle traffic in immediate area is complete.
- C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
- D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Section 32 9200 "Turf and Grasses" and Section 32 9300 "Plants."
- E. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures according to "Cutting and Patching" Article in Section 01 7300 "Execution."

3.5 DUCT AND DUCT-BANK INSTALLATION

- A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.
- B. Install duct according to NEMA TCB 2.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0543 - 12

- C. Slope: Pitch duct a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope duct from a high point between two manholes, to drain in both directions.
- D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches (1200 mm), both horizontally and vertically, at other locations unless otherwise indicated.
 - 1. Duct shall have maximum of two 90 degree bends or the total of all bends shall be no more 180 degrees between pull points.
- E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.
- F. Installation Adjacent to High-Temperature Steam Lines: Where duct is installed parallel to underground steam lines, perform calculations showing the duct will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.
- G. End Bell Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches (250 mm) o.c. for 5-inch (125-mm) duct, and vary proportionately for other duct sizes.
 - 1. Begin change from regular spacing to end-bell spacing 10 feet (3 m) from the end bell, without reducing duct slope and without forming a trap in the line.
 - 2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line direct-buried duct with calculated expansion of more than 3/4 inch (19 mm).
 - 3. Grout end bells into structure walls from both sides to provide watertight entrances.
- H. Terminator Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use manufactured, cast-in-place duct terminators, with entrances into structure spaced approximately 6 inches (150 mm) o.c. for 4-inch (100-mm) duct, and vary proportionately for other duct sizes.
 - 1. Begin change from regular spacing to terminator spacing 10 feet (3 m) from the terminator, without reducing duct line slope and without forming a trap in the line.
 - 2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line duct with calculated expansion of more than 3/4 inch (19 mm).
- I. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet (3 m) outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install GRC penetrations of building walls as specified in Section 26 0544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
- J. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0543 - 13

- K. Pulling Cord: Install 200-lbf- (1000-N-) test nylon cord in empty ducts.
- L. Concrete-Encased Ducts and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Prepare trench bottoms as specified in Section 31 2000 "Earth Moving" for pipes less than 6 inches (150 mm) in nominal diameter.
 - 2. Width: Excavate trench 12 inches (300 mm) wider than duct on each side.
 - 3. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
 - 4. Depth: Install so top of duct envelope is at least 24 inches (600 mm) below finished grade in areas not subject to deliberate traffic, and at least 30 inches (750 mm) below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.
 - 5. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
 - 6. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 - 7. Minimum Space between Duct: 3 inches (75 mm) between edge of duct and exterior envelope wall, 2 inches (50 mm) between ducts for like services, and 4 inches (100 mm) between power and communications ducts.
 - 8. Elbows: Use manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct unless otherwise indicated. Extend encasement throughout length of elbow.
 - 9. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.
 - a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 - b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of base. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches (100 mm)above finished floor and minimum 3 inches (75 mm)from conduit side to edge of slab.
 - c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of wall. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches (100 mm)above finished floor and no less than 3 inches (75 mm)from conduit side to edge of slab.
 - 10. Reinforcement: Reinforce concrete-encased duct where crossing disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
 - 11. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
 - 12. Concrete Cover: Install a minimum of 3 inches (75 mm) of concrete cover between edge of duct to exterior envelope wall, 2 inches (50 mm) between duct of like services, and 4 inches (100 mm) between power and communications ducts.
 - 13. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0543 - 14

- a. Start at one end and finish at the other, allowing for expansion and contraction of duct as its temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written instructions, or use other specific measures to prevent expansion-contraction damage.
- b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch (15-mm) reinforcing-rod dowels extending a minimum of 18 inches (450 mm) into concrete on both sides of joint near corners of envelope.
- 14. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 03 3000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between duct and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow around duct and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-installation application.
- M. Direct-Buried Duct and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Comply with requirements in Section 31 2000 "Earth Moving" for preparation of trench bottoms for pipes less than 6 inches (150 mm) in nominal diameter.
 - 2. Width: Excavate trench 12 inches (300 mm) wider than duct on each side.
 - 3. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
 - 4. Depth: Install top of duct at least 36 inches (900 mm) below finished grade unless otherwise indicated.
 - 5. Set elevation of bottom of duct bank below frost line.
 - 6. Support ducts on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
 - 7. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to ducts to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 - 8. Install duct with a minimum of 3 inches (75 mm) between ducts for like services and 6 inches (150 mm) between power and communications duct.
 - 9. Elbows: Install manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct direction unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 - 10. Install manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct.
 - a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 - b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of base. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches (100 mm)above finished floor and minimum 3 inches (75 mm)from conduit side to edge of slab.
 - c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of wall. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches (100 mm)above finished floor and no

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation 2 Childers Architect 07-26-19

26 0543 - 15

less than 3 inches (75 mm)from conduit side to edge of slab.

- 11. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches (100 mm) over duct and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 31 2000 "Earth Moving" for installation of backfill materials.
 - a. Place minimum 3 inches (75 mm) of sand as a bed for duct. Place sand to a minimum of 6 inches (150 mm) above top level of duct.
 - b. Place minimum 6 inches (150 mm) of engineered fill above concrete encasement of duct.
- N. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried duct, placing them 24 inches (600 mm) o.c. Align planks along the width and along the centerline of duct or duct bank. Provide an additional plank for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional planks 12 inches (300 mm) apart, horizontally.
- O. Underground-Line Warning Tape: Bury nonconducting and conducting underground line specified in Section 26 0553 "Identification for Electrical Systems" no less than 12 inches (300 mm) above all concrete-encased duct and duct banks and approximately 12 inches (300 mm) below grade. Align tape parallel to and within 3 inches (75 mm) of centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.

3.6 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

- A. Cast-in-Place Manhole Installation:
 - 1. Finish interior surfaces with a smooth-troweled finish.
 - 2. Knockouts for Future Duct Connections: Form and pour concrete knockout panels 1-1/2 to 2 inches (38 to 50 mm) thick, arranged as indicated.
 - 3. Comply with requirements in Section 03 3000 "Cast-in-Place Concrete" for cast-in-place concrete, formwork, and reinforcement.
- B. Precast Concrete Handhole and Manhole Installation:
 - 1. Comply with ASTM C 891 unless otherwise indicated.
 - 2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
 - 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch (25-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevations:
 - 1. Manhole Roof: Install with rooftop at least 15 inches (375 mm) below finished grade.
 - 2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch (25 mm) above finished grade.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0543 - 16

- 3. Install handholes with bottom below frost line below grade.
- 4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
- 5. Where indicated, cast handhole cover frame integrally with handhole structure.
- D. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.
- E. Manhole Access: Circular opening in manhole roof; sized to match cover size.
 - 1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
 - 2. Install chimney, constructed of precast concrete collars and rings, to support cast-iron frame to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for frame to chimney.
- F. Waterproofing: Apply waterproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Waterproofing materials and installation are specified in 07 Series Specifications. After duct has been connected and grouted, and before backfilling, waterproof joints and connections, and touch up abrasions and scars. Waterproof exterior of manhole chimneys after mortar has cured at least three days.
- G. Dampproofing: Apply dampproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Dampproofing materials and installation are specified in Section 07 1113 "Bituminous Dampproofing." After ducts are connected and grouted, and before backfilling, dampproof joints and connections, and touch up abrasions and scars. Dampproof exterior of manhole chimneys after mortar has cured at least three days.
- H. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.
- I. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.
- J. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches (97 mm) for manholes and 2 inches (50 mm) for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

3.7 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of duct, and seal joint between box and extension as recommended by manufacturer.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
- D. Install handholes and boxes with bottom below frost line below grade.

17-13 OSU, College of Osteopathic Medicine at		UNDERGROUND DUCTS
Cherokee Nation	26 0543 - 17	AND RACEWAYS FOR
Childers Architect		ELECTRICAL SYSTEMS
07-26-19		

- E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.
- F. Field cut openings for duct according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.
- G. For enclosures installed in asphalt paving and subject to occasional, nondeliberate, heavyvehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.
 - 1. Concrete: 3000 psi (20 kPa), 28-day strength, complying with Section 03 3000 "Cast-in-Place Concrete," with a troweled finish.
 - 2. Dimensions: 10 inches wide by 12 inches deep (250 mm wide by 300 mm deep).

3.8 GROUNDING

A. Ground underground ducts and utility structures according to Section 26 0526 "Grounding and Bonding for Electrical Systems."

3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
 - 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch- (300-mm-) long mandrel equal to duct size minus 1/4 inch (6 mm). If obstructions are indicated, remove obstructions and retest.
 - 3. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 26 0526 "Grounding and Bonding for Electrical Systems."
- B. Correct deficiencies and retest as specified above to demonstrate compliance.
- C. Prepare test and inspection reports.

3.10 CLEANING

- A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.
- B. Clean internal surfaces of manholes, including sump.
 - 1. Sweep floor, removing dirt and debris.
 - 2. Remove foreign material.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0543 - 18

END OF SECTION

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0543 - 20

SECTION 26 0544

SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 - 2. Sleeve-seal systems.
 - 3. Sleeve-seal fittings.
 - 4. Grout.
 - 5. Silicone sealants.
- B. Related Requirements:
 - 1. Section 07 8413 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Wall Sleeves:
 - 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
 - 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0544 - 1

SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

- C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
- E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- F. Sleeves for Rectangular Openings:
 - 1. Material: Galvanized sheet steel.
 - 2. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 - b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0544 - 2

SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

- 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 07 9200 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.
- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boottype flashing units applied in coordination with roofing work.
- F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves

17-13 OSU, College of Osteopathic Medicine at
Cherokee Nation26 0544 - 3Childers Architect07-26-19

SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION

SECTION 26 0548.16

SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Restraint channel bracings.
 - 2. Restraint cables.
 - 3. Seismic-restraint accessories.
 - 4. Mechanical anchor bolts.
 - 5. Adhesive anchor bolts.
- B. Related Requirements:
 - 1. Section 26 0529 "Hangers and Supports for Electrical Systems" for commonly used electrical supports and installation requirements.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES.
 - b. Annotate to indicate application of each product submitted and compliance with requirements.
- B. Delegated-Design Submittal: For each seismic-restraint device.
 - 1. Include design calculations and details for selecting seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 2. Design Calculations: Calculate static and dynamic loading caused by equipment weight, operation, and seismic and wind forces required to select seismic and wind restraints and for designing vibration isolation bases.

26 0548.16 - 1

- a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
- 3. Seismic- and Wind-Restraint Details:
 - a. Design Analysis: To support selection and arrangement of seismic and wind restraints. Include calculations of combined tensile and shear loads.
 - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 - c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 - d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints.
- B. Qualification Data: For testing agency.
- C. Welding certificates.
- D. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.
- B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis. They shall bear anchorage preapproval from OSHPD in addition to preapproval, showing maximum seismic-restraint ratings, by ICC-ES or another agency acceptable to authorities having jurisdiction. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) that support seismic-restraint designs must be signed and sealed by a qualified professional engineer.
- E. Comply with NFPA 70.

26 0548.16 - 2

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Wind-Restraint Loading:
 - 1. Building Classification Category: Refer to Structural Engineer Drawings.
 - 2. Minimum 10 lb/sq. ft. multiplied by maximum area of HVAC component projected on vertical plane normal to wind direction and 45 degrees either side of normal.
- B. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC: Refer to structural engineer drawings.
 - 2. Assigned Seismic Use Group or Building Category as Defined in the IBC.

2.2 RESTRAINT CHANNEL BRACINGS

A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end, with other matching components, and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.3 RESTRAINT CABLES

A. Restraint Cables: ASTM A 492 stainless-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.4 SEISMIC-RESTRAINT ACCESSORIES

- A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- B. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
- C. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings and matched to type and size of anchor bolts and studs.
- D. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings and matched to type and size of attachment devices used.
- E. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.5 MECHANICAL ANCHOR BOLTS

A. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

26 0548.16 - 3

2.6 ADHESIVE ANCHOR BOLTS

A. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.
- B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods caused by seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 03 3000 "Cast-in-Place Concrete."
- B. Equipment and Hanger Restraints:
 - 1. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 - 2. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES providing required submittals for component.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0548.16 - 4

- E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- F. Drilled-in Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 - 5. Set anchors to manufacturer's recommended torque using a torque wrench.
 - 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where connection is terminated to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
- C. Seismic controls will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

26 0548.16 - 5

3.6 ADJUSTING

A. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION

SECTION 26 0553

IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
 - 2. Labels.
 - 3. Bands and tubes.
 - 4. Tapes and stencils.
 - 5. Tags.
 - 6. Signs.
 - 7. Cable ties.
 - 8. Paint for identification.
 - 9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
- B. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.
- C. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1 and IEEE C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.

26 0553 - 1

- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Comply with NFPA 70E and Section 26 0574 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.
- F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 - 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 3. Colors for 240-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - 4. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.
 - 5. Color for Neutral: White.
 - 6. Color for Equipment Grounds: Green.
 - 7. Colors for Isolated Grounds: Green with white stripe.
- C. Raceways and Cables Carrying Circuits at More Than 600 V:
 - 1. Black letters on an orange field.
 - 2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING."
- D. Warning Label Colors:
 - 1. Identify system voltage with black letters on an orange background.

26 0553 - 2

- E. Warning labels and signs shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."
- F. Equipment Identification Labels:
 - 1. Black letters on a white field.

2.3 LABELS

- A. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 - 1. Minimum Nominal Size:
 - a. 1-1/2 by 6 inchesfor raceway and conductors.
 - b. 3-1/2 by 5 inchesfor equipment.
 - c. As required by authorities having jurisdiction.

2.4 TAPES AND STENCILS

- A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
- B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.
- C. Tape and Stencil: 4-inch-wide black stripes on 10-inch centers placed diagonally over orange background and is 12 inches wide. Stop stripes at legends.
- D. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.
- E. Underground-Line Warning Tape:
 - 1. Tape:
 - a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 - 2. Color and Printing:
 - a. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, ANSI Z535.4, and ANSI Z535.5.
 - b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".

26 0553 - 3

c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

2.5 TAGS

- A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.
- B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.

1.

2.6 SIGNS

- A. Baked-Enamel Signs:
 - 1. Preprinted aluminum signs, high-intensity reflective, punched or drilled for fasteners, with colors, legend, and size required for application.
 - 2. 1/4-inch grommets in corners for mounting.
 - 3. Nominal Size: 7 by 10 inches.
- B. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Engraved legend.
 - 2. Thickness:
 - a. For signs up to 20 sq. in., minimum 1/16 inch thick.
 - b. For signs larger than 20 sq. in., 1/8 inch thick.
 - c. Engraved legend with black letters on white face.
 - d. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.7 CABLE TIES

- A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black.
- C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.

26 0553 - 4

- 1. Minimum Width: 3/16 inch.
- 2. Tensile Strength at 73 Deg F according to ASTM D 638: 7000 psi.
- 3. UL 94 Flame Rating: 94V-0.
- 4. Temperature Range: Minus 50 to plus 284 deg F.
- 5. Color: Black.

2.8 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.
- G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 - 1. Secure tight to surface of conductor, cable, or raceway.
- H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.

26 0553 - 5

- 1. Secure tight to surface of conductor, cable, or raceway.
- I. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
- J. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.
- K. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
- L. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
 - 3. "UPS."
- M. Vinyl Wraparound Labels:
 - 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 - 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
- N. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.
- O. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.
- P. Self-Adhesive Labels:
 - 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
- Q. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.
- R. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.
- S. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.
- T. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 - 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.

26 0553 - 6

- U. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.
- V. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.
- W. Underground Line Warning Tape:
 - 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.
 - 2. Limit use of underground-line warning tape to direct-buried cables.
 - 3. Install underground-line warning tape for direct-buried cables and cables in raceways.
- X. Baked-Enamel Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on minimum 1-1/2-inch-high sign; where two lines of text are required, use signs minimum 2 inches high.
- Y. Metal-Backed Butyrate Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.
- Z. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.
- AA. Cable Ties: General purpose, for attaching tags, except as listed below:
 - 1. Outdoors: UV-stabilized nylon.
 - 2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.
- C. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil. Stencil legend "DANGER - CONCEALED HIGH-VOLTAGE WIRING" with 3-inch-high, black letters on 20-inch centers.

26 0553 - 7

- 1. Locate identification at changes in direction, at penetrations of walls and floors, and at 10-foot maximum intervals.
- D. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Self-adhesive labels.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- E. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 20 A and 120 V to Ground: Identify with self-adhesive raceway labels.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- F. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
 - 3. "UPS."
- G. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use self-adhesive wraparound labels to identify the phase.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- H. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.
- I. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
- J. Concealed Raceways and Duct Banks, More Than 600 V, within Buildings: Apply floor marking tape to the following finished surfaces:
 - 1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
 - 2. Wall surfaces directly external to raceways concealed within wall.
 - 3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.
- K. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- L. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.
- M. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Selfadhesive labels.

26 0553 - 8

- 1. Apply to exterior of door, cover, or other access.
- 2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 - a. Power-transfer switches.
 - b. Controls with external control power connections.
- N. Arc Flash Warning Labeling: Self-adhesive labels.
- O. Equipment Identification Labels:
 - 1. Indoor Equipment: Self-adhesive label.
 - 2. Outdoor Equipment: Laminated acrylic or melamine sign.
 - 3. Equipment to Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 - b. Enclosures and electrical cabinets.
 - c. Access doors and panels for concealed electrical items.
 - d. Switchgear.
 - e. Switchboards.
 - f. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 - g. Substations.
 - h. Emergency system boxes and enclosures.
 - i. Motor-control centers.
 - j. Enclosed switches.
 - k. Enclosed circuit breakers.
 - I. Enclosed controllers.
 - m. Variable-speed controllers.
 - n. Push-button stations.
 - o. Power-transfer equipment.
 - p. Contactors.
 - q. Remote-controlled switches, dimmer modules, and control devices.
 - r. Battery-inverter units.
 - s. Battery racks.
 - t. Power-generating units.
 - u. Monitoring and control equipment.
 - v. UPS equipment.
 - w. Generator Grounding Method for switched or un-switched neutral conductor.

END OF SECTION

26 0553 - 10

SECTION 26 0574

OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.3 DEFINITIONS

- A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.
- B. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
- C. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
- D. SCCR: Short-circuit current rating.
- E. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

- A. Product Data: For computer software program to be used for studies.
- B. Other Action Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals shall be in digital form.
 - 1. Arc-flash study input data, including completed computer program input data sheets.
 - 2. Arc-flash study report; signed, dated, and sealed by a qualified professional engineer.
 - a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0574 - 1

OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Arc-Flash Study Specialist.
- B. Product Certificates: For arc-flash hazard analysis software, certifying compliance with IEEE 1584 and NFPA 70E.

1.6 CLOSEOUT SUBMITTALS

- A. Maintenance procedures according to requirements in NFPA 70E shall be provided in the equipment manuals.
- B. Operation and Maintenance Procedures: In addition to items specified in Section 01 7823 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's personnel that comply with requirements in NFPA 70E.

1.7 QUALITY ASSURANCE

- A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are unacceptable.
- B. Arc-Flash Study Software Developer Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
 - 1. The computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- C. Arc-Flash Study Specialist Qualifications: Professional engineer in charge of performing the study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- D. Field Adjusting Agency Qualifications: An independent agency, with the experience and capability to adjust overcurrent devices and to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

- A. <u>Software Developers</u>: Subject to compliance with requirements, available software developers offering software that may be used for the Work include, but are not limited to, the following:
 - 1. <u>ESA Inc</u>.
 - 2. Operation Technology, Inc.
 - 3. <u>Power Analytics, Corporation</u>.
 - 4. <u>SKM Systems Analysis, Inc</u>.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0574 - 2

OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY

- B. Comply with IEEE 1584 and NFPA 70E.
- C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT

- A. Executive summary.
- B. Study descriptions, purpose, basis and scope.
- C. One-line diagram, showing the following:
 - 1. Protective device designations and ampere ratings.
 - 2. Cable size and lengths.
 - 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 - 4. Motor and generator designations and kVA ratings.
 - 5. Switchgear, switchboard, motor-control center and panelboard designations.
- D. Study Input Data: As described in "Power System Data" Article.
- E. Short-Circuit Study Output: As specified in "Short Circuit Study Output" Paragraph in "Short-Circuit Study Report Contents" Article in Section 26 0572 "Overcurrent Protective Device Short-Circuit Study."
- F. Protective Device Coordination Study Report Contents: As specified in "Protective Device Coordination Study Report Contents" Article in Section 26 0573 "Overcurrent Protective Device Coordination Study."
- G. Arc-Flash Study Output:
 - 1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.
 - b. Calculated symmetrical fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. No AC Decrement (NACD) ratio.
 - e. Equivalent impedance.
 - f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 - g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.
- H. Incident Energy and Flash Protection Boundary Calculations:
 - 1. Arcing fault magnitude.
 - 2. Protective device clearing time.
 - 3. Duration of arc.
 - 4. Arc-flash boundary.
 - 5. Working distance.
 - 6. Incident energy.
 - 7. Hazard risk category.
 - 8. Recommendations for arc-flash energy reduction.

I.Fault study input data, case descriptions, and fault-current calculations including a definition of17-13 OSU, College of Osteopathic Medicine atOVERCURRENTCherokee Nation26 0574 - 3PROTECTIVE DEVICEChilders ArchitectARC-FLASH STUDY07-26-19

terms and guide for interpretation of the computer printout.

2.3 ARC-FLASH WARNING LABELS

- A. Comply with requirements in Section 26 0553 "Identification for Electrical Systems." Produce a 3.5-by-5-inch thermal transfer label of high-adhesion polyester for each work location included in the analysis.
- B. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:
 - 1. Location designation.
 - 2. Nominal voltage.
 - 3. Flash protection boundary.
 - 4. Hazard risk category.
 - 5. Incident energy.
 - 6. Working distance.
 - 7. Engineering report number, revision number, and issue date.
- C. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.

3.2 ARC-FLASH HAZARD ANALYSIS

- A. Comply with NFPA 70E and its Annex D for hazard analysis study.
- B. Preparatory Studies:
 - 1. Short-Circuit Study Output: As specified in "Short-Circuit Study Output" Paragraph in "Short-Circuit Study Report Contents" Article in Section 26 0572 "Overcurrent Protective Device Short-Circuit Study."
 - 2. Protective Device Coordination Study Report Contents: As specified in "Protective Device Coordination Study Report Contents" Article in Section 26 0573 "Overcurrent Protective Device Coordination Study."
- C. Calculate maximum and minimum contributions of fault-current size.
 - 1. The minimum calculation shall assume that the utility contribution is at a minimum and shall assume no motor load.
 - 2. The maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.
- D. Calculate the arc-flash protection boundary and incident energy at locations in the electrical distribution system where personnel could perform work on energized parts.
- E. Include medium- and low-voltage equipment locations, except equipment rated 240-V ac or less

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0574 - 4 PROTECTIVE DEVICE ARC-FLASH STUDY fed from transformers less than 125 kVA.

- F. Safe working distances shall be specified for calculated fault locations based on the calculated arc-flash boundary, considering incident energy of 1.2 cal/sq.cm.
- G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators shall be decremented as follows:
 - 1. Fault contribution from induction motors should not be considered beyond three to five cycles.
 - 2. Fault contribution from synchronous motors and generators should be decayed to match the actual decrement of each as closely as possible (e.g., contributions from permanent magnet generators will typically decay from 10 per unit to three per unit after 10 cycles).
- H. Arc-flash computation shall include both line and load side of a circuit breaker as follows:
 - 1. When the circuit breaker is in a separate enclosure.
 - 2. When the line terminals of the circuit breaker are separate from the work location.
- I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.3 POWER SYSTEM DATA

- A. Obtain all data necessary for the conduct of the arc-flash hazard analysis.
 - 1. Verify completeness of data supplied on the one-line diagram on Drawings. Call discrepancies to the attention of Engineer.
 - 2. For new equipment, use characteristics submitted under the provisions of action submittals and information submittals for this Project.
 - 3. For existing equipment, whether or not relocated, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers.
- B. Electrical Survey Data: Gather and tabulate the following input data to support study. Comply with recommendations in IEEE 1584 and NFPA 70E as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT Level III certification or NICET Electrical Power Testing Level III certification.
 - 1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 - 2. Obtain electrical power utility impedance at the service.
 - 3. Power sources and ties.
 - 4. Short-circuit current at each system bus, three phase and line-to-ground.
 - 5. Full-load current of all loads.
 - 6. Voltage level at each bus.
 - 7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in per cent, and phase shift.
 - 8. For reactors, provide manufacturer and model designation, voltage rating and impedance.
 - 9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0574 - 5

OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY settings.

- 10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
- 11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
- 12. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
- 13. Motor horsepower and NEMA MG 1 code letter designation.
- 14. Low-voltage cable sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
- 15. Medium-voltage cable sizes, lengths, conductor material, and cable construction and metallic shield performance parameters.

3.4 LABELING

- A. Apply one arc-flash label for 600-V ac, 480-V ac, and applicable 208-V ac panelboards and disconnects and for each of the following locations:
 - 1. Motor-control center.
 - 2. Low-voltage switchboard.
 - 3. Switchgear.
 - 4. Medium-voltage switch.
 - 5. Control panel.

3.5 APPLICATION OF WARNING LABELS

A. Install the arc-fault warning labels under the direct supervision and control of the Arc-Flash Study Specialist.

3.6 DEMONSTRATION

A. Engage the Arc-Flash Study Specialist to train Owner's maintenance personnel in the potential arc-flash hazards associated with working on energized equipment and the significance of the arc-flash warning labels.

END OF SECTION

SECTION 26 0923

LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Time switches.
 - 2. Photoelectric switches.
 - 3. Standalone daylight-harvesting switching and dimming controls.
 - 4. Indoor occupancy and vacancy sensors.
 - 5. Switchbox-mounted occupancy sensors.
 - 6. Digital timer light switches.
 - 7. High-bay occupancy sensors.
 - 8. Extreme temperature occupancy sensors.
 - 9. Outdoor motion sensors.
 - 10. Lighting contactors.
 - 11. Emergency shunt relays.
- B. Related Requirements:
 - 1. Section 26 2726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Show installation details for the following:
 - a. Occupancy sensors: Include shop drawings with a coverage map.
 - b. Vacancy sensors. Include shop drawings with a coverage map.
 - 2. Interconnection diagrams showing field-installed wiring.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and elevations, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Structural members to which equipment will be attached.
 - 3. Items penetrating finished ceiling, including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Control modules.
- B. Field quality-control reports.
- C. Sample Warranty: For manufacturer's warranties.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Faulty operation of lighting control software.
 - b. Faulty operation of lighting control devices.
 - 2. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

- A. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.
 - 1. Listed and labeled as defined in NFPA 70 and marked for intended location and application.
 - 2. Programs: Eight on-off set points on a 24-hour schedule and an annual holiday schedule that overrides the weekly operation on holidays.
 - 3. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program on selected channels.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0923 - 2

LIGHTING CONTROL DEVICES

- 4. Astronomic Time: All channels.
- 5. Automatic daylight savings time changeover.
- 6. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Description: Solid state, with dry contacts rated for 1800 VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A, and compatible with ballasts and LED lamps.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
 - 3. Time Delay: Fifteen-second minimum, to prevent false operation.
 - 4. Surge Protection: Metal-oxide varistor.
 - 5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.
 - 6. Failure Mode: Luminaire stays ON.

2.3 INDOOR OCCUPANCY AND VACANCY SENSORS

- A. General Requirements for Sensors:
 - 1. Wall or Ceiling-mounted (as shown on drawings), solid-state indoor occupancy and vacancy sensors.
 - 2. Dual technology.
 - 3. Integrated power pack.
 - 4. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 5. Operation:
 - a. Vacancy Sensor: Unless otherwise indicated, lights are manually turned on and sensor turns lights off when the room is unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 6. Sensor Output: **Sensor is powered from the power pack**.
 - 7. Power: Line voltage.
 - Power Pack: Dry contacts rated for 20-A ballast or LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 9. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 10. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
 - 11. Bypass Switch: Override the "on" function in case of sensor failure.

- 12. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.
- B. PIR Type: Wall or Ceiling mounted; detect occupants in coverage area by their heat and movement.
 - 1. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in..
 - 2. Detection Coverage (Room, Ceiling Mounted): Detect occupancy anywhere in a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
 - 3. Detection Coverage (Corridor, Ceiling Mounted): Detect occupancy within 90 feet when mounted on a 10-foot-high ceiling.
 - 4. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180degree pattern centered on the sensor over an area of **1000 square feet** when mounted 48 inches above finished floor.
- C. Ultrasonic Type: **Wall** or **Ceiling** mounted; detect occupants in coverage area through pattern changes of reflected ultrasonic energy.
 - 1. Detector Sensitivity: Detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 - 2. Detection Coverage (Small Room): Detect occupancy anywhere within a circular area of 600 sq. ft. when mounted on a 96-inch-high ceiling.
 - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted at ceiling height.
 - 4. Detection Coverage (Large Room): Detect occupancy anywhere within a circular area of 2000 sq. ft. when mounted on at ceiling height.
 - 5. Detection Coverage (Corridor): Detect occupancy anywhere within 90 feet when mounted on at ceiling height in a corridor not wider than 14 feet.
 - 6. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180degree pattern centered on the sensor over an area of 2000 square feet when mounted 84 inches above finished floor.
- D. Dual-Technology Type: Wall or Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.

2.4 SWITCHBOX-MOUNTED VACANCY SENSORS

- A. General Requirements for Sensors: Automatic-wall-switch occupancy sensor with manual on-off switch, suitable for mounting in a single gang switchbox using hardwired connection.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application, and shall comply with California Title 24.
 - 2. Vacancy Sensor Operation: Unless otherwise indicated, turn lights off when coverage area is unoccupied, with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0923 - 4

LIGHTING CONTROL DEVICES

- 4. Switch Rating: Not less than 800-VA LED load at 120 V, 1200-VA LED load at 277 V, and 800-W incandescent.
- B. Wall-Switch Sensor Tag OS or OCC:
 - 1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 2100 sq. ft.
 - 2. Sensing Technology: Dual technology PIR and ultrasonic.
 - 3. Capable of controlling load in three-way application.
 - 4. Voltage: Match the circuit voltage.
 - 5. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
 - 6. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
 - 7. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
 - 8. Color: Obtain approval from architect prior to ordering.
 - 9. Faceplate: Color matched to switch.

2.5 HIGH-BAY OCCUPANCY SENSORS

- A. General Description: Solid-state unit. The unit is designed to operate with the lamp and ballasts indicated.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Operation: Turn lights on when coverage area is occupied, and to half-power when unoccupied; with a time delay for turning lights to half-power that is adjustable over a minimum range of 1 to 16 minutes.
 - 3. Continuous Lamp Monitoring: When lamps are dimmed continuously for 24 hours, automatically turn lamps on to full power for 15 minutes for every 24 hours of continuous dimming.
 - 4. Power: Line voltage.
 - 5. Operating Ambient Conditions: 32 to 149 deg F.
 - 6. Mounting: Threaded pipe.
 - 7. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 8. Detector Technology: PIR.
 - 9. Power and dimming control from the luminaire ballast that has been modified to include the dimming capacitor.
- B. Detector Coverage: User selectable by interchangeable PIR lenses, suitable for mounting heights from 12 to 50 feet.
- C. Accessories: Obtain manufacturer's installation and maintenance kit with laser alignment tool for sensor positioning and power port connectors.

2.6 LIGHTING CONTROL FOR EXTERIOR LIGHTS

A. Description: Four Pole pass-thru style relay panel. Panel shall include capacity to control four 20A circuits. Manual and programmable control of each relay via simple keypad and 2 line display. UL 916 in NEMA 1 enclosure. Include outdoor photosensor. Equal performance to Eaton LK4 LiteKeeper series.

- 1. Current Rating for Switching: Listing or rating consistent with type of load served, including LED, inductive, and high-inrush ballast (ballast with 15 percent or less THD of normal load current).
- 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
- 3. Enclosure: Comply with NEMA 250.
- 4. Provide with control as indicated on Drawings, matching the NEMA type specified for the enclosure.

2.7 EMERGENCY SHUNT RELAY

- A. Description: NC, electrically held relay, arranged for wiring in parallel with manual or automatic switching contacts; complying with UL 924.
 - 1. Coil Rating: As indicated on drawings.

2.8 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 16 AWG. Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.
- B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION

- A. Comply with NECA 1.
- B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.3 WIRING INSTALLATION

- A. Comply with NECA 1.
- B. Wiring Method: Comply with Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.
- C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 26 0553 "Identification for Electrical Systems."
 - 1. Identify controlled circuits in lighting contactors.
 - 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.
- B. Label time switches and contactors with a unique designation.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Lighting control devices will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.6 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 0923 - 7

LIGHTING CONTROL DEVICES occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

- 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
- 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.
- 3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION

SECTION 26 0943

NETWORK LIGHTING CONTROLS

PART 1. GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Networked Central Lighting Control systems. Systems are composed of:
 - a. Network integrated power switching systems.
 - b. Network integrated dimming systems.
 - c. Standalone power switching and dimming systems.
 - d. DALI-compliant network integrated lighting controller.
 - e. Automation control processors.
 - f. Sensors
 - g. User Interfaces:
 - 1) Keypad
 - 2) Touch screen
 - 3) Virtual touch screen
 - 2. System Functions and Sequences
- B. Related Requirements:
 - 1. Section 12 24 13 Roller Window Shades
 - 2. Section 25 08 00 Commissioning of Integrated Automation
 - 3. Section 25 10 00 Integrated Automation Network Equipment
 - 4. Section 25 11 13 Integrated Automation Network Servers
 - 5. Section 25 13 13 Integrated Automation Control and Monitoring Network Supervisory Control

- 6. Section 25 13 19 Integrated Automation Control and Monitoring Network Interoperability
- 7. Section 25 15 16 Integrated Automation Software for Control and Monitoring Networks
- 8. Section 26 05 00 Common Work Results For Electrical
- 9. Section 26 27 26 Wiring Devices
- 10. Section 26 51 00 Interior Lighting
- 11. Section 27 15 00 Communications Horizontal Cabling
- 12. Section 27 41 00 Audio-Video Systems

REFERENCES

- C. Definitions
 - 1. Control: Effecting a change in state by one PC program onto a microprocessor or device.
 - 2. Scene: Predetermined light level of a single fixture of group of fixtures.
 - 3. DALI: Digital addressable lighting interface.
 - 4. RS-485: A serial network protocol complying with TIA-485-A.
 - 5. UTP: Unshielded twisted pair.
- D. Reference Standards
 - 1. California Energy Commission (CEC):
 - 2. CEC CCR Title 24, Part 6: California Energy Efficiency Standards for Residential and Nonresidential Buildings, California's Appliance Efficiency Program: Listed lighting control devices.
 - 3. National Fire Protection Association (NFPA):
 - 4. NFPA 70 National Electrical Code.
 - 5. Underwriters Laboratories (UL)
 - 6. UL 508 Industrial Control Equipment

SYSTEM DESCRIPTION

- E. Web Accessible, network connected, lighting control system utilizing preset control software, central signal microprocessor, lighting control panel including integrated branch circuit protection, and [power switching modules and relays] [Dimming Modules] [DALI Control Modules] [Sensors] [User Interfaces].
- F. System Components: System includes the following addressable components:
 - 1. Keypad controls.
 - 2. Touch screen controls.
 - 3. Window treatment controls.
 - 4. Remote occupancy sensors.
 - 5. Lighting load shedding.
 - 6. Timed room lighting.
 - 7. Daylight compensating lighting controls.
 - 8. Communication interface to facility-wide room management system.
 - 9. Communication interface to building automation system gateway/interface.

CRESTRON LIGHTING

CONTROLS

SUBMITTALS 17-13 OSU, College of Osteopathic Medicine at	
Cherokee Nation	
Childers Architect	26 0943 - 2
07-26-19	

- G. Product Data: For each type of product required for complete network lighting control system, demonstrating compliance with requirements.
- H. Shop Drawings: Indicated the following:
 - 1. Schematic diagram showing complete network lighting control system and accessories.
 - 2. Circuits and emergency circuits with capacity and phase, control zones, load type and voltage per circuit.

CLOSEOUT SUBMITTALS

I. Operating and maintenance instructions.

QUALITY ASSURANCE

- J. Manufacturer Qualification: Manufacturer of network lighting controls with minimum [five] years record of satisfactory manufacturing and support of components comparable to basis of design system.
- K. Source Requirements: Provide Network Lighting System through a single source from a single manufacturer.
- L. Manufacturer Qualifications: Approved manufacturer of network lighting controls listed in this Section with minimum [five] years record of satisfactory manufacturing and support of components comparable to basis of design system.
 - 1. Approval of Comparable Products: Submit the following in accordance with project substitution requirements, within time allowed for substitution review:
 - a. Product data, including certified independent test data indicating compliance with requirements.
 - b. Samples of each component.
 - c. Sample submittal from similar project.
 - d. Project references: Minimum of 5 installations not less than 5 years old, with Owner and Architect contact information.
 - e. Sample warranty.
 - 2. Substitutions following award of contract are not allowed except as stipulated in Division 01 General Requirements.
 - 3. Approved manufacturers must comply with separate requirements of Submittals Article.
- M. Electrical Components, Devices, and Accessories: UL listed and labeled per NFPA 70.
- N. California Appliance Efficiency Listing: Provide products that comply with provisions of CEC CCR Title 24, Part 6.

COORDINATION

- O. Coordinate integrated lighting and dimming controls with systems and components specified in the following sections:
 - 1. Division 11 Section "Audio-Visual Equipment".
 - 2. Division 12 Section "Window Treatments".
 - 3. Division 23 Section "Instrumentation and Control for HVAC".
 - 4. Division 25 Section "Integrated Automation Control of Electrical Systems".
 - 5. Division 26 Section "Panelboards".

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- 6. Division 26 Section "Wiring Devices".
- 7. Division 26 Section "Lighting Devices".
- 8. Division 26 Section "Interior Lighting".
- 9. Division 27 Section "Communications Horizontal Cabling".
- 10. Division 27 Section "Audio-Video Systems"
- 11. Division 28 Section "Electronic Access Control and Intrusion Detection".

PROJECT CONDITIONS

- P. Environmental Conditions Range:
 - 1. Temperature: 32 104 deg F (0 40 deg C).
 - 2. Relative Humidity: 10 90 percent, noncondensing.

WARRANTY

- Q. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of modular dimming controls system the fail in materials or workmanship within the specified warranty period following substantial completion.
 - 1. Warranty Period: Touch screen display and overlay components: 90 days.
 - 2. Warranty Period: Disc drives and other moving parts, pan/tilt heads, and power supplies: 1 year.
 - 3. Warranty Period: Other components, up to 8 years as per warranty contract.
- R. Manufacturer's Extended Support Service: Extended telephone support: Unlimited period.

PART 2. PRODUCTS

WIRELESS DIMMING SOLUTIONS

- A. MANUFACTURERS
 - 1. Basis-of-Design Manufacturer: Subject to compliance with requirements, provide products of Crestron Electronics, Inc., Rockleigh, NJ 07647, Phone (855) 644-7643, <u>www.crestron.com</u> with the following components and characteristics.
- B. Wireless technology shall be fully compatible and scalable with all manufacturer lighting control solutions.
- C. All batteries shall be field replaceable with non-proprietary standard sizes.
- D. WIRELESS DEVICES WITHIN THE SPACE
 - Lighting control devices within the space shall communicate using a Wi-Fi friendly 2.4 GHz peer-to-peer mesh network topology. Devices within the space shall be commissionable as an autonomous control system without the need for additional equipment. Each device shall auto negotiate its RF channel to avoid noisy commercial environments. Wireless communication shall be secured using 128-bit encryption. Up to 32 devices can make up a space. The range between wireless devices shall be 50'. The wireless technology shall be Crestron Zūm MESH.
 - 2. Junction Box Zone Controllers
 - a. Zūm MESH wireless communication
 - b. Junction box mounted using $\frac{1}{2}$ knockout
 - c. 120 / 277 VAC input
 - d. Product

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- 1) Crestron ZUMMESH-JBOX-16A-SW (switched load, 16 amps)
- 2) Crestron ZUMMESH-JBOX-5A-LV (0-10v dimmed load, 5 amps)
- 3) Crestron ZUMMESH-JBOX-16A-LV (0-10v dimmed load, 16 amps)
- 4) Crestron ZUMMESH-JBOX-20A-PLUG (switched plug load, 20 amps)
- 3. Wall Box Zone Controllers
 - a. Zūm MESH wireless communication
 - b. Trimmed using gangable Decorator trim plates
 - c. Mounted in 3.5" back box
 - d. Color shall be white [black] [almond]
 - e. Product
 - 1) Crestron ZUMMESH-5A-SW-W [B] [A]-S (switched load, 5 amps)
 - 2) Crestron ZUMMESH-5A-LV-W [B] [A]-S (0-10v dimmed load, 5 amps)
- 4. Keypads (Battery Powered)
 - a. Zūm MESH wireless communication
 - b. Box, wall, or glass mountable
 - c. Trimmed using gangable Decorator trim plates
 - d. Replaceable coin cell battery (5-year life)
 - e. Color shall be white [black] [almond]
 - f. 1 Button (rocker with ON/OFF/DIM UP/DIM DOWN features)

- 1) Product: Crestron ZUMMESH-KP10ABATT-W [B] [A]-S
- g. 4 Button (ON/SCENE 1/SCENE 2/OFF)

•
1
ĺ

- 1) Product: Crestron ZUMMESH-KP10BBATT-W [B] [A]-S
- h. 6 Button (ON/SCENE 1/SCENE 2/OFF/DIM UP/DIM DOWN)

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- 1) Product: Crestron ZUMMESH-KP10CBATT-W [B] [A]-S
- i. 6 Button (ON/SCENE 1/SENSOR DISABLE/OFF/DIM UP/DIM DOWN)
 - 1) Sensor disable lights will NOT turn off automatically for 2 hours

•		ON
		SCENE 2
	+	SENSOR
		OFF

- 2) Product: Crestron ZUMMESH-KP10DBATT-W [B] [A]-S
- 5. Keypads (AC Powered)
 - a. Zūm MESH wireless communication
 - b. Box mountable
 - c. Trimmed using gangable Decorator trim plates
 - d. 120 / 277 VAC input
 - e. Color shall be white [black] [almond]
 - f. 1 Button (rocker with ON/OFF/DIM UP/DIM DOWN features)

1) Product: Crestron ZUMMESH-KP10A-W [B] [A]-S

g. 4 Button (ON/SCENE 1/SCENE 2/OFF)

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- 1) Product: Crestron ZUMMESH-KP10B-W [B] [A]-S
- h. 6 Button (ON/SCENE 1/SCENE 2/OFF/DIM UP/DIM DOWN)
 - 1) Product: Crestron ZUMMESH-KP10C-W [B] [A]-S
- i. 6 Button (ON/SCENE 1/SENSOR DISABLE/OFF/DIM UP/DIM DOWN)
 - 1) Sensor disable lights will NOT turn off automatically for 2 hours
 - 2) Product: Crestron ZUMMESH-KP10D-W [B] [A]-S
- 6. Open loop daylight sensors (Battery Powered)
 - a. Zūm MESH wireless communication
 - b. Utilizes open and closed loop technologies for auto calibration
 - c. Open loop sensing technology for daily sensing
 - d. Replaceable (2) lithium-ion AAA batteries (10-year life)
 - e. Product: Crestron ZUMMESH-PHOTOCELL-BATT
- 7. Motion Sensors
 - a. Zūm MESH wireless communication
 - b. Passive infrared sensing technology
 - c. Ceiling mounted
 - d. 500 ft.² coverage (8-12 ft. ceilings)
 - e. Grace Occupancy when lights turn off due to vacancy, a 15-second grace period starts during which the room lights can be turned on again by waving a hand to trigger the sensor.
 - f. Vacancy sensor shall go into occupancy mode when keypad low battery detected.
 - g. Replaceable lithium-ion 9V battery (10-year life)
 - h. Products:
 - 1) Crestron ZUMMESH-IR-OCCUPANCY-BATT (auto on, auto off)
 - 2) Crestron ZUMMESH-IR-VACANCY-BATT (manual on, auto off)
- E. NETWORKING THE WIRELESS SPACES
 - 1. Wireless spaces shall be networked together to enable time clock, load shedding and global management features. The space shall be networked together using a Wi-Fi friendly 2.4 GHz mesh network topology. The range between the wireless devices shall be no more than 150'. The wireless technology shall be Crestron Zūm NET.
 - 2. Networking the space shall incorporate BMS integration as specified hereto after.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- 3. Wireless solutions shall be fully compatible will all other lighting control solutions specified herein.
- 4. Wireless Bridge
 - a. Each wireless space shall have one wireless bridge. Linking the space (Crestron Zūm MESH) and the networking connection (Crestron Zūm NET).
 - b. Wireless bridge shall enable iOS app to reconfigure the space via Bluetooth technology.
 - c. Product: Crestron ZUMMESH-NETBRIDGE
- 5. Wireless Gateway
 - a. Crestron Zūm NET gateway shall have bi-directional MESH communication with up to 50 ZUMMESH-NETBRIDGE devices.
 - b. Powered via IEEE 802.3at Type 1
 - c. Product: Crestron ZUMNET-GATEWAY
- 6. Floor Hub
 - a. Connects up to 100 Crestron ZUMMESH-NETBRIDGE devices
 - b. Processor contains astronomical time clock
 - c. Maintenance is performed via standard web browser.
 - d. 1 rack unit mounted
 - e. Product: Crestron ZUM-FLOOR-HUB

SPACE BUILDER

- F. MANUFACTURERS
 - 1. Basis-of-Design Manufacturer: Subject to compliance with requirements, provide products of Crestron Electronics, Inc., Rockleigh, NJ 07647, Phone (855) 644-7643, www.crestron.com with the following components and characteristics.
- G. Contractor shall provide the lighting control systems as called out herein and shown on the Contract Drawings with the following additional features
- H. Each space shall be factory packaged with the load controller, keypads, sensors, and additional accessories necessary for a completely working space. There shall be separate containers for rough-in and trim materials. The box shall be labeled with the space type.
- I. Each space shall be factory configured to operate when installed by the Contractor. On-site configuration shall only be required for sensor tuning and scene setting.
- J. Each space shall be autonomous in its control and shall not rely on centralized processors for standard operations.
- K. Products
 - 1. Crestron SpaceBuilder GLPP
 - 2. Crestron SpaceBuidler GLPAC
 - 3. Crestron SpaceBuidler GLFLEX
 - 4. Crestron SpaceBuidler GLDALI
 - 5. Crestron SpaceBuidler GLDMX
 - 6. Crestron SpaceBuidler GLGLIPAC
 - 7. Crestron SpaceBuidler GLILUX
 - 8. Crestron SpaceBuidler GLPYNG
 - 9. Crestron SpaceBuidler GLPHASE

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- 10. Crestron SpaceBuidler GLDIST
- 11. Crestron SpaceBuidler GLNET

1-3 ZONE LIGHTING CONTROLLER

- L. MANUFACTURERS
 - 1. Basis-of-Design Manufacturer: Subject to compliance with requirements, provide products of Crestron Electronics, Inc., Rockleigh, NJ 07647, Phone (855) 644-7643, www.crestron.com with the following components and characteristics.
- M. Provide 1, 2, or 3 zone lighting controller for switching or 0-10v zones. Unit shall operate as an autonomous lighting controller for the space. All sensors and zones within the space shall be controlled without the need for additional equipment.
- N. [Lighting controller shall be networked as part of the building wide lighting control system using Cresnet serial communication.]
- O. Lighting controller shall be a surface-mounted industrial control enclosure mounts directly on two side by side 4" square electrical junction boxes, suitable for concealed locations. Lighting controller shall have flying leads with wing nut type connections.
- P. Circuit Input: 100 277 VAC, 50/60 Hz. Input, one 16 amp
- Q. Zone Outputs
 - 1. 1, 2, or 3 high inrush mechanically held relays for switching loads
 - a. 1,000,000 cycle mechanically latching relays
 - b. Zero-cross arc-less high inrush
 - c. Air gap off protection on each channel
 - 2. 0-10v dimming models shall include 0-10v 4 wiring dimming for each channel
- R. Product
 - 1. Crestron GLPP-SWCN (1 zone switching)
 - 2. Crestron GLPP-1SW2CN (2 zones switching
 - 3. Crestron GLPP-1SW3CN (3 zones switching
 - 4. Crestron GLPP-DIMFLVCN-PM (1 zone 0-10v dimming with power monitoring)
 - 5. Crestron GLPP-1DIMFLVCN2-PM (2 zones 0-10v dimming with power monitoring)
 - 6. Crestron GLPP-1DIMFLVCN3-PM (3 zones 0-10v dimming with power monitoring)
- S. GLPP SPECIFIC ACCESSORIES
 - 1. Keypads
 - a. Connects to lighting controller with class II (2) #18 AWG or greater conductors.
 - b. Color shall be white [black] [almond].
 - c. Scene Functions
 - 1) ROCKER (ON/OFF/hold to dim) or 4 Button (ON/SCENE 1/SCENE 2/OFF)
 - i) Product: Crestron GLPPA-KP-W [B] [A]-S
 - d. Zone Functions
 - 1) Rocker controlling zone 1 (ON/OFF/hold to dim)
 - i) Product: Crestron GLPPA-KP1-W [B] [A]-S
 - 2) Rocker controlling zone 2 (ON/OFF/hold to dim)
 - i) Product: Crestron GLPPA-KP2-W [B] [A]-S

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- 3) Rocker controlling zone 3 (ON/OFF/hold to dim)
 - i) Product: Crestron GLPPA-KP3-W [B] [A]-S
- 4) 4 Button controlling zones 1-3 (ZONE 1 toggle/ZONE 2 toggle/ZONE 3 toggle/OFF)
 - i) Product: Crestron GLPPA-KP4-W [B] [A]-S
- 2. [User Remote Control

- a. Lighting controller shall be adjustable using the handheld battery operated user unit.
- b. Pre-programmed at factory, no configuration or programming required.
- c. Remote shall provide features:
 - 1) Zone control
 - 2) Scene selection
- d. Product: Crestron GLPPA-REMOTE-USER]

3. Configuration Remote Control

- a. Lighting controller shall be adjustable using the handheld battery operated configuration remote.
- b. Pre-programmed at factory, no configuration or programming required.
- c. Remote shall provide features:
 - 1) Zone control
 - 2) Scene setting
 - 3) Motion sensor mode select and timeout
 - 4) Daylight sensor calibration
- d. Provide minimum [1] configuration remote per project.
- e. Product: Crestron GLPPA-REMOTE-PROG
- 4. Motion Sensors
 - a. Motion sensors shall be provided in spaces as shown on the Contract Drawings.
 - b. Dual technology ultrasonic and passive infrared motion sensing.
 - c. Lighting controller selectable occupancy (auto-on, auto off) and vacancy (manual-on, auto-off) modes.
 - d. Vacancy time out shall be adjustable
 - e. Equipped with 4-wire interface for direct connection to lighting controller enables IR handheld remote signals to be passed through the ceiling to the lighting controller.
 - f. Coverage: 360 deg., 2000 sq. ft
 - g. Ceiling or flush mounted
 - h. Color shall be white
 - i. Product: Crestron GLS-ODT-C-NS

4-8 ZONE LIGHTING CONTROLLER 17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

CRESTRON LIGHTING CONTROLS

T. MANUFACTURERS

- 1. Basis-of-Design Manufacturer: Subject Smpliance with requirements, provide products of Crestron Electronics, Inc., Rockleigh, NJ 07647, Phone (855) 644-7643, www.crestron.com with the following components and characteristics.
- U. Provide 4 or 8 zone lighting controller for switching or 0-10v zones. Unit shall operate as an autonomous lighting controller for the space. All sensors and zones within the space shall be controlled without the need for additional equipment.

- V. [Lighting controller shall be networked as part of the building wide lighting control system using Ethernet communication.]
- W. Lighting controller shall be a surface-mounted NEMA 1 industrial control enclosure, suitable for concealed locations.
- X. 4 or 8 circuit inputs
 - 1. 100 277 VAC, 50/60 Hz. 16amp each
 - 2. [Barriered 4 normal and 4 emergency relays (-4E models only)]
- Y. 4 or 8 zone outputs
 - 1. 100,000 cycle mechanically latching relays
 - 2. Air gap off protection on each channel
 - 3. 0-10v 4-wiring dimming for each channel (60mA max current sink)
- Z. 8 digital inputs
- AA. 4 motion sensor inputs
- BB. 4 daylight sensor inputs
- CC. Override port for UL924 life safety applications
- DD. [Real time power monitoring on all channels (-PM models only)]
- EE. [4 normally open isolated relays(-PM models only)]
- FF. [Chicago Plenum rated enclosure (-CP models only)]
- GG. Product
 - 1. Crestron GLPAC-DIMFLV4 [-CP] [-PM] (4-CH controller)
 - 2. Crestron GLPAC-DIMFLV8 [-CP] [-PM] (8-CH controller)
 - 3. Crestron GLPAC-DIMFLV8-4E [-CP] [-PM] (4-CH normal & 4-CH emergency controller

26 0943 - 12

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

CENTRALIZED PANEL SOLUTIONS

- HH. MANUFACTURERS
 - 1. Basis-of-Design Manufacturer: Subject to compliance with requirements, provide products of Crestron Electronics, Inc., Rockleigh, NJ 07647, Phone (855) 644-7643, www.crestron.com with the following components and characteristics.
- II. PANEL CHARACTERISTICS
 - 1. Panel shall be digitally addressable using serial or Ethernet communication from Control Processor Panel specified hereto after.
 - 2. Lighting dimmers shall be compatible with drivers / ballasts and LEDs / lamps as listed in SS26 50 00 LIGHTING.
 - 3. Dimmers shall be provided in quantities, control types, and rated for the connected load as shown on the Contract Drawings.
 - 4. Line and load phases shall be coordinated per manufacturers recommendations.
 - 5. Dimming modules shall be field replaceable.
 - 6. Dimming panels shall be listed to UL508.
 - 7. Lighting control panels shall be convection cooled without the use of moving parts.
 - 8. Lightning Protection: can withstand 6 kV / 3 kA surge, as per IEC 61000-4-5 and ANSI/IEEE C62.41-1991
 - 9. NEMA Type 1 enclosure, IP20 rated protection, for indoor use only; 16-gauge galvanized steel, surface wall mount; gray front cover with powder coated finish
 - 10. Lighting control panels shall comply with NEMA PB 1 and UL 50 (CAN/CSA C22.2, No. 94), UL 67 (CSA C22.2, No. 29), UL 489 (CAN/CSA C22.2, No. 65), and UL 916 (CSA C22.2, No. 205).
- JJ. FEED TYPES
 - 1. Reference Contract Drawing schedules for required feed types and breaker ratings.
 - 2. FEED-THROUGH (FT)
 - a. No branch circuit overcurrent protection.
 - b. Provide barriers as required to separate normal and emergency circuits in a single panel.
 - c. [Panels shall be fabricated as tub and tray. The tub shall be installable at time of rough-in while the factory wired tray is installed separately at time of trim.]
 - 3. MAIN LUG ONLY (MLO)
 - a. 120 VAC 3-phase; 120/240 VAC split-phase
 - 1) 20 amp thermal magnetic
 - 2) AIC rated to 10,000A [22,000A] [65,000A]
 - 3) Provide AFCI or GFCI where noted on Contract Drawings.
 - b. 277 VAC 3-phase
 - 1) 20 amp thermal magnetic
 - 2) AIC rated to 18,000A [35,000A] [65,000A]
 - 4. MAIN CIRCUIT BREAKER (MCB)
 - a. 120 VAC 3-pole
 - 1) 150 amp
 - 2) 200 amp

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- 3) 220 amp
- 4) AIC rated to 10,000A [100,000A]
- b. 277 VAC 3-pole
 - 1) 60 amp
 - 2) 80 amp
 - 3) 100 amp
 - 4) 125 amp
 - 5) AIC rated to 18,000A [35,000A] [65,000A]
- KK. ZONE CONTROL MODULES
 - 1. Standard switching
 - a. 100,000 cycle mechanically latching relays
 - b. Air gap off protection on each channel
 - 2. [Hi-Inrush Switching
 - a. 1,000,000 cycle mechanically latching relays
 - b. Zero-cross arc-less high inrush
 - c. Air gap off protection on each channel]
 - 3. [Modular Switching
 - a. Independently replaceable 20 amp mechanically latching relays
 - b. Single or double pole per Contract Drawings schedules
 - c. Air gap off protection on each channel
 - d. Product: Crestron GLR-HD-1P, GLR-HD-2P]
 - 4. 4-Wire 0-10v Dimming
 - a. Use for any 4-wire 0-10v dimming load
 - b. Zero-cross arc-less high inrush
 - c. Air gap off protection on each channel
 - 5. 2-Wire Phase Dimming
 - a. Universal Phase Dimming
 - 1) Used for any 2-wire phase dimming loads.
 - 2) Auto-load detection shall select forward- or reverse-phase control based on each channels load.
 - 3) Zero-cross filtering to reduce lamp flickering
 - 4) Air gap off protection on each channel
 - b. [Reverse Phase Dimming
 - 1) Used for electronic low voltage (ELV) loads unless specifically noted otherwise or recommended by fixture manufacturer.
 - 2) Reverse-phase dimming
 - 3) Zero-cross filtering to reduce lamp flickering
 - 4) Air gap off protection on each channel]
 - c. [Forward Phase Dimming
 - Used for magnetic low voltage (MLV) or incandescent loads unless specifically noted otherwise or recommended by fixture manufacturer.
 - 2) Forward-phase dimming

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- 3) Zero-cross filtering to reduce lamp flickering
- 4) Air gap off protection on each channel]

DALI SOLUTIONS

- LL. MANUFACTURERS
 - 1. Basis-of-Design Manufacturer: Subject to compliance with requirements, provide products of Crestron Electronics, Inc., Rockleigh, NJ 07647, Phone (855) 644-7643, www.crestron.com with the following components and characteristics.
- MM. Where indicated on the Contract Drawings, areas shall have all necessary parts, pieces and software for a fully turnkey DALI solution. System components shall comply with IEC 60929, Annex E, and IEC 62386 for DALI lighting control devices, wiring, computer hardware and software. Solution shall include but not be limited to:
 - 1. Individually addressable electronic drivers/ballasts on the digital DALI bus. Drivers shall be able to receive commands and respond with status.
 - 2. Sensors and user interfaces shall not reside on the DALI bus. These accessories shall be networked to the DALI interface controller as part of the turnkey solution. Reference specifications hereto after for more details on sensor and user interface selections that shall be compatible with the turnkey DALI solution.
 - 3. The DALI bus shall be class 2 (1) twisted pair #18 AWG or larger and be shielded. Install in free air per DIV 26.
 - 4. [The DALI bus shall be class 1 (2) #12 THHN or larger and shall run with branch circuits in raceway per SS 26 05 33.]
 - 5. Each space shall be configured to have a minimum (1) group for all luminaires, and (1) group for each zone of fixtures as shown on the drawings.
 - 6. A DALI interface controller shall be provided
 - a. Interface shall control minimum (2) DALI loops (128 DALI addresses)
 - 1) Contractor shall load the DALI loops to no more than 58 addresses at time of construction.
 - b. DIN 43880 form factor occupying not more than 9 DIN modules.
 - c. When replacing a single addressed luminaire, DALI re-addressing shall not require re-programming.
 - d. Mounts in NEMA 1 metal enclosure.
 - 1) Product: Crestron DIN-EN
 - e. Override port shall open the DALI bus forcing all drivers/ballasts to emergency preset light level (100% ON).
 - f. DALI interface shall be commissionable from USB/Ethernet from a PC or from a lighting control touch screen. Software shall allow for configuration of driver properties, groups and scenes.
 - g. Product: Crestron DIN-DALI-2

DMX SOLUTIONS

- NN. MANUFACTURERS
 - 1. Basis-of-Design Manufacturer: Subject to compliance with requirements, provide products of Crestron Electronics, Inc., Rockleigh, NJ 07647, Phone (855) 644-7643, www.crestron.com with the following components and characteristics.

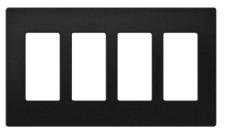
17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- OO. DMX Architectural Control
 - 1. All Crestron series 2 or 3 processors shall support open DMX Ethernet.
 - 2. DMX architectural control shall include color and intensity selection, preset saving/recall, and simple fade effects. Presets may be recalled from any user interface or triggered by astronomical time clock [or BMS event].

- 3. Touch screens specified hereto after and called out on the Contract Drawings shall have a color picker user interface. Interface shall accept graphical selections or numerical selections.
- 4. Adding zones of DMX controlled fixtures shall only require the addition of a DMX Ethernet converter.
- 5. Contractor shall provide DMX Ethernet converters as required to interface with architectural DMX zones as shown on the Contract Drawings.
- 6. sACN to DMX-512 Converter
 - a. Compatible with ESP and Art-Net DMX over Ethernet protocols.
 - b. Supports RDM bi-directional communication.
 - c. IEEE 802.3af PoE powered.
 - d. Single port DMX to Ethernet node that can be used in either input or output mode depending on software utility set up configuration.
 - e. Product: Crestron GLA-DIN-ODE-POE
- PP. DMX Show Control
 - 1. Full DMX show control shall be provided for the following spaces:
 - a. [THEATER 101]
 - b. [Reference Contract Drawing plans for scope areas.]
 - 2. The DMX Control Interface shall be a microprocessor based lighting system designed specifically as a multi-purpose lighting and show playback controller for entertainment and architectural applications. A personal computer running emulation software shall not be acceptable.
 - 3. The DMX Control Interface shall be an integrated device that combines DMX-based lighting playback with architectural control features, scripting capability, and web-based control.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- 4. The DMX Control Interface shall store all of its programming data in non-volatile flash memory, including built-in flash memory and/or a removable flash memory card and can be transferred to/from a remote personal computer via Ethernet.
- 5. The DMX Control Interface shall have an internal real-time clock and calendar that operates from an internal lithium battery even in the absence of external power and be able to trigger shows and other events based on time of day, sunrise, sunset, day of week, day of year and/or a combination of these events.
- 6. The DMX Control Interface shall be capable of synchronizing its operation with and/or remotely controlling other DMX Control Interfaces of the same kind across an Ethernet network.
- 7. The DMX Control Interface shall support standard theatrical lighting playback models including direct channel control, fixture level control, groups, channel parking, scaling, disabling, offsets, transparency, tracking and overrides, which can be used to create submasters and grandmaster control, partitioning, zones and other control setups.
- 8. System capacity
 - a. The DMX Control Interface shall support:
 - b. Up to 2000 cues.
 - c. Up to 200 macros.
 - d. Up to 100 groups.
 - e. Up to 100 timer events.
 - f. Up to 500 timecode event triggers.
 - g. Up to 256 DMX input triggers.
 - h. Up to 512 button station buttons.
 - i. Up to 512 contact closures.
 - j. Up to 16 TCP/UDP packet triggers.
 - k. Reception of 512 DMX input levels.
 - I. Processing of 512 DMX output levels.
 - m. Additional DMX outputs may be supported by networking multiple DMX Control Interfaces together via Ethernet.
- 9. Product
 - a. Crestron GLA-DMX-1UNIVERSE (one 512 address DMX universe)
 - b. Crestron GLA-DMX-2UNIVERSE (two 512 address DMX universes)


USER INTERFACES

- QQ. MANUFACTURERS
 - 1. Basis-of-Design Manufacturer: Subject to compliance with requirements, provide products of Crestron Electronics, Inc., Rockleigh, NJ 07647, Phone (855) 644-7643, www.crestron.com with the following components and characteristics.
- RR. KEYPADS

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

	LIGH	its	1			1		
	FA	N			LIGHTS			GHTS
•	SHA	DES						
•	MUS	ic					VOLUME	
•	ON	•		1	LIGHTS OFF			-
	OFF						OFF	-

- 1. Provide keypad quantities and locations as specified herein and shown on the Contract Drawings.
- 2. Field-configurable remote keypad with auto-adjusting backlight illuminating replaceable, engraveable programmable buttons in number indicated, with white LED indicators, configured to fit in standard single-gang box.
- 3. Trimmed using decorator face plates.
- 4. Cresnet connected for power and communication
- 5. Maximum buttons: 8
- 6. Color shall be white [black] [almond].
- 7. Product: Crestron C2N-CBD-P-W [B] [A]-S
- SS. FACE PLATES
 - 1. Provide decorator faceplates for all keypad devices.

- 2. Multiple devices adjacent to door jams shall be ganged together.
- 3. Decorator faceplates shall be white [black] [almond] and shall match in texture and color the keypad devices.
- 4. Product
 - a. FP-G1-W [B] [A]-S (1 gang faceplate)
 - b. FP-G2-W [B] [A]-S (2 gang faceplate)
 - c. FP-G3-W [B] [A]-S (3 gang faceplate)
 - d. FP-G4-W [B] [A]-S (4 gang faceplate)
- TT. TOUCH SCREENS

- 1. TFT active-matrix color LCD touch screen
- 2. Projected capacitive, 5-point multi-touch technology
- 3. 24-bit 16.7M colors, and dual-window HD video, HDTV, and high-resolution RGB streaming multimedia, IP intercom, and web browsing capabilities. Dynamic graphics and text capability. Enables custom control screen programming.
- 4. 5 hard keys pushbuttons
- 5. Bidirectional 10/100 Mbps Ethernet communication.
- 6. H.264 and MJPEG streaming video.
- 7. 5.0 MP camera
- 8. Built-in microphone and speaker with multi-language voice recognition
- 9. Rava SIP intercom
- 10. Connected via IEEE 802.3af Class 3 PoE Powered Device
- 11. Surface mount over 2-gang or 3-gang electrical box.
- 12. Color: [Black] [White].
- 13. Products
 - a. Crestron TSW-760-W-S (7" white, 2-gang mounted)
 - b. Crestron TSW-1060-W-S (10" white, 3-gang mounted)
 - c. Crestron TSW-760-B-S (7" black, 2-gang mounted)
 - d. Crestron TSW-1060-B-S (10" black, 3-gang mounted)
- UU. XPanel Interface: Virtual Touch Screen
 - 1. Touch screen user interface, network-connected lighting management interface running on Crestron lighting control processor to provide lighting control, daylight harvesting, occupancy sensing, lighting schedules and overall adjustment to system functionality
 - 2. Virtual touch screen is to be accessible via computer or laptop interface furnished by other.
 - 3. Access to XPanel shall be via browser based IP address or .EXE file application.
 - 4. Product: Crestron XPANEL

SENSORS

- VV. MANUFACTURERS
 - 1. Basis-of-Design Manufacturer: Subject to compliance with requirements, provide products of Crestron Electronics, Inc., Rockleigh, NJ 07647, Phone (855) 644-7643, www.crestron.com with the following components and characteristics.

26 0943 - 19

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- 2. Contractor shall provide quantities and locations of sensors per the Contract Drawings and as required for turnkey commercial lighting control operation.
- WW. MOTION SENSORS
 - 1. Dual-Technology Ceiling Mounted (networked)

- a. Detects movement within space while reducing false triggering or shutoffs while space is occupied. Combination of ultrasonic motion detection and passive infrared detection with internal microprocessor. Sensitivity is independently adjustable for installed conditions. Delayed time off adjustment. Walk-through mode.
- b. Equipped with 4-wire interface for direct connection to control bus.
- c. Includes connection port for remotely mounted photocell.
- d. Coverage: 360 deg., 2000 ft.²
- e. Set-up and commissioning parameters shall be configurable via a handheld wireless remote.
- f. Mounts to 3" octagon box
- g. Product: Crestron GLS-ODT-C-CN
- 2. Dual Technology Wall Mounted

- a. Detects movement within space while reducing false triggering or shutoffs while space is occupied. Combination of ultrasonic motion detection and passive infrared detection with internal microprocessor. Sensitivity is independently adjustable for installed conditions. Delayed time off adjustment. Walk-through mode.
- b. Equipped with 3-wire interface for direct connection to control system utilizing control processor
- c. Coverage: 110 deg horizontal., 1200 ft.²
- d. Mounts to 4" octagon box or surface mounted.
- e. Product: Crestron GLS-ODT-W-1200
- XX. DAYLIGHT SENSORS

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

1. Indoor Daylight Sensor (open loop)

- a. Continually monitors daylight entering window or skylight to enable daylight harvesting applications to provide control of room lighting based on presence of daylight. Equipped with 3-wire interface for direct connection to control system utilizing control processor; 24 VDC power from network control bus.
- b. Light sensitivity: 3 to 6,000 foot-candles
- c. Mounting: [Ceiling flush mounted] [Ceiling surface mounted] [Wall flush mounted] [Wall surface mounted] [As indicated].
- d. Product: Crestron GLS-LOL
- 2. Indoor Daylight Sensor (closed loop)

- a. Continually monitors daylight at work station location to enable daylight harvesting or lumen maintenance applications to provide control of room lighting based on lighting level at workstation. Equipped with 3-wire interface for direct connection to control system utilizing control processor; 24 VDC power from network control bus.
- b. Light sensitivity: 0 to 70 foot-candles
- c. Mounting: [Ceiling flush mounted] [Ceiling surface mounted] [Wall flush mounted] [Wall surface mounted] [As indicated].
- d. Product: Crestron GLS-LCL
- 3. Exterior Daylight Sensor

- a. Sensor shall continually monitor the total ambient light level and can adjust the lighting as necessary to reach the desired light level. The sensitivity is adjustable so that a 10V signal matches full daylight and 0V matches total darkness. A built in visor provides more consistent readings by blocking direct sunlight, and also protects the lens from the elements.
- b. Sensor shall be installed facing north.
- c. Light Sensitivity: 5 to 750 foot-candles
- d. Power: 24 VDC

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

- e. Mounting: surface mount
- f. Product: Crestron GLS-LEXT
- YY. PARTITION SENSORS

- 1. Single sided diffuse reflective sensing technology.
- 2. Digital device with control bus connectivity.
- 3. Surface mounted to 1-gang back box.
- 4. Trim using decorator face plate to match mounting surface
- 5. Product: Crestron GLS-PART-CN

ZZ. SENSOR INTERFACE MODULE

- 1. Sensor Interface Device: Integrates occupancy sensors and related sensors with control network. In separate enclosure. 4-wire bus providing 24 VDC power to network devices, with two independent sensing inputs.
- 2. Product: Crestron GLS-SIM

CONTROL PROCESSOR PANEL

AAA. Manufacturers

- 1. Basis-of-Design Manufacturer: Subject to compliance with requirements, provide products of Crestron Electronics, Inc., Rockleigh, NJ 07647, Phone (855) 644-7643, www.crestron.com with the following components and characteristics.
- BBB. Control Processor Panels shall be provided in quantities and locations per the Contract Drawings, or as required for a fully networked lighting control system.
- CCC. Control Processor Panels shall be factory assembled in a UL508 panelshop.
- DDD. Shall include but not be limited to the following equipment to support all lighting control devices.
 - 1. Cabinets

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

DIN-EN-2X18 shown

- a. Cabinet shall be made of 16-gauge galvanized steel
- b. NEMA 1 rated
- c. All DIN rails and mounting accessories shall be furnished an properly installed.
- d. Product: Crestron DIN-EN
- 2. Processors

- a. Crestron 3-series control system
- b. Modular architecture supports multiple simultaneous running programs.
- c. Ethernet 10/100Base-T and Cresnet connected
- d. Astronomical time clock with events stored in non-volatile RAM
- e. Native BACnet/IP with support for up to 500 BACnet objects
- f. Built-In Web Server: IIS v.6.0
- g. SNMP remote management.
- h. Active Directory support.
- i. IPv6 ready.
- j. DHCP and DNS Support
- k. Native Email Client
- I. Remote Diagnostics
- m. Remote Program Loading and Administration
- n. SSL security plug in
- o. Support user assigned or dynamic IP address.
- p. Products
 - 1) Crestron DIN-AP3
 - 2) Crestron RMC3

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

3. Power Supplies

- a. Provide regulated 24 VDC power supplies as required to support lighting control equipment.
- b. 120 VAC input
- c. Product: Crestron DIN-PWS50
- 4. Hubs

- a. Provide Cresnet distribution hubs as required to support all Cresnet devices.
- b. Product: Crestron DIN-HUB

UL924 EMERGENCY OVERRIDE

EEE. Automatic Load Control Relays (ALCR)

- 1. 0-10v Loads
 - a. UL924 listed 4-wire automatic load control relay shall bring life safety lights on to 100% on loss of power.
 - b. 120/277 VAC
 - c. Product: Crestron GLA-EPC-FLV
- 2. Switched Loads
 - a. UL924 listed 2-wire automatic load control relay shall bring life safety lights on to 100% on loss of power.
 - b. Products
 - 1) Crestron GLA-EPC-P-120 (120 VAC)
 - 2) Crestron GLA-EPC-P-277 (277 VAC)
- FFF. Emergency Shunt Relays (ESR)
 - 1. 2 or 3 Wire Phase Controlled Loads
 - a. UL924 listed 2/3-wire emergency shunt relay shall bring life safety lights on to 100% on loss of power.

26 0943 - 24

- b. Products
 - 1) Crestron GLA-ESR-120-3/4 (120 VAC)
 - 2) Crestron GLA-ESR-277-3/4 (277 VAC)

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

CRESTRON LIGHTING CONTROLS

GGG. Phase Loss Sensor

- 1. Lighting control panels shown on the Contract Drawings as emergency life safety shall have override UL924 listed override ports.
- 2. Provide 3-phase loss sensor fed with normal power. Upon loss of any phase the phase loss sensor shall trip the emergency lighting control panel override port(s).
- 3. Product: Crestron GLS-PLS-120/277

PROGRAMMING AND CONFIGURATION SOFTWARE

- HHH. Lighting system configuration software shall allow custom programming of embedded operating systems for control of lighting system.
- III. Lighting system configuration software shall Provide a graphical symbol based programming and development environment.
- JJJ. The Lighting System Configuration software shall generate Custom Software Control Interface Modules for communication with compatible remote integrated systems.
- KKK. The Custom Software Control Interface shall include the following control data:
 - 1. Complete lighting system control functions.
 - 2. System specific control sets for sub systems and supervisory systems.
 - 3. The Custom Software Control Interface shall be capable of communicating the following data types:
 - 4. Bidirectional digital and analog data communication.
 - 5. Bidirectional serial data communication.

CONDUCTORS AND CABLING

- LLL. Power Supply Side of Remote-Control Power Sources: Comply with requirements of Division 26 Section "Low-Voltage Electrical Power Conductors."
- MMM. UTP Cable: 100-ohm, UTP. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
- NNN. Communications Control Cable, Non-Plenum Rated: 22 AWG data pair stranded bare copper, and 18 AWG power pair stranded bare copper, Type CM.
 - 1. Product: Crestron CRESNET-NP.
- OOO. Communications Control Cable, Plenum Rated: 22 AWG data pair, stranded bare copper and 18 AWG power pair, stranded bare copper, Type CMP, complying with NFPA 262.
 - 1. Product: Crestron CRESNET-P.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

26 0943 - 25

- PPP. Communications High-Power Control Cable, Non-Plenum Rated: 22 AWG stranded bare copper data pair, and 12 AWG stranded bare copper power pair, Type CM.
 - 1. Product: Crestron CRESNET-HP-NP.

PART 3. EXECUTION

FIXTURE TESTING

- A. Contractor shall provide lighting control factory test reports for each fixture specified on this project.
- B. Fixtures already tested and listed in the factory database do not require re-testing.
- C. Test report shall include:
 - 1. Confirmation of compatibility with control device
 - 2. Dimming Range
 - 3. Performance notations
- D. Crestron factory fixture compatibility testing information may be found here: <u>http://www.crestron.com/resources/lighting-fixture-compatibility</u>

TUNABLE WHITE CONTROL

E. Tunable white fixtures as specified in SS 26 50 00 and shown on the contract drawings shall have DALI [DMX] drivers and controls as specified hereto before.

- F. Touch screens specified hereto after and called out on the Contract Drawings shall have intensity and color temperature controls as well as a color picker user interface.
- G. Meetings shall occur between the Owner, Contractor, and Manufacturer to coordinate the sequencing and features of the tunable white fixtures. Tunable white coordination meetings shall include but not be limited to:
 - 1. [(2) 2 hour]
 - 2. [(2) 8 hour on-site visits]

PLUG LOAD CONTROL

- H. Plug load controls as shown on the Contract Drawing shall be part of the lighting control system.
- I. Plug loads shall operate in a Occupancy MODE. Auto-ON and Auto-OFF.

17-13 OSU, College of Osteopathic Medicine at	
Cherokee Nation	
Childers Architect	26 0943 - 26
07-26-19	

CRESTRON LIGHTING CONTROLS

ENGRAVING

- J. Keypad buttons shall be factory engraved using laser technology.
- K. Initial shipment of keypads shall be factory engraved per the sequence of operations specified herein and shown on the Contract Drawings.
- L. Custom keypad engravings shall be provided as part of the close out procedures.

BMS INTEGRATION

- M. The lighting control system shall be integrated with the BMS system as specified in Division 25.
- N. Communication shall occur using BACnet/IP.
- O. Contractor shall provide licenses for each the following objects shall be shared with the BMS system:
 - 1. Occupancy Status
 - 2. Zone On/Off/Dim
 - 3. Photocell reading
- P. The lighting control system shall also accept time clocked events from the BMS system.
- Q. Provide necessary coordination labor for integration of all BACnet objects listed hereto before.

AV INTEGRATION

- R. The lighting control system shall be integrated with the AV solutions as specified in Division 26.
- S. The lighting and AV systems shall interface via Ethernet communication.
- T. Contractor shall provide Ethernet drops as required for the lighting control system to talk to the AV solutions.
- U. The following objects shall be shared with the AV system:
 - 1. Occupancy Status
 - 2. Zone On/Off/Dim
 - 3. Photocell reading
 - 4. Scene preset recalls
- V. Provide necessary coordination labor for integration of all AV objects listed hereto before.

SYSTEM FUNCTIONS AND SEQUENCES

- W. System Control Functions: The system shall be capable of the following lighting control functions:
- X. Scene Creation: store levels of selected fixture circuits in preset groups.
- Y. Scene Recall: recall previously stored scenes.
- Z. Off: all zones off.
- AA. Dim up/down: raise/lower level of all zones.
- BB. Password Entry: enter password to enable touch screen control access.
- CC. Room/Zone Selection: select room, zone or area to be controlled.
- DD. Shade Control: raise or lower room shades.
- EE. Event Scheduler: select times for scenes to be automatically recalled.

7-13 OSU, College of Osteopathic Medicine at	
Cherokee Nation	
Childers Architect	
)7-26-19	

CRESTRON LIGHTING CONTROLS

26 0943 - 27

USER INTERFACE CONTROL FUNCTIONS

- FF. The Keypad interface shall be capable of the following system control functions:
 - 1. Scene Recall
 - 2. Off
 - 3. Dim up/down
- GG. Touch Screen and Virtual Touch Screen: Touch Screen and Virtual Touch Screen interfaces shall be capable of the following system control functions:
 - 1. Password Entry
 - 2. Multiple levels
 - 3. Room/Zone Selection
 - 4. Scene Recall
 - 5. Dim up/down
 - 6. Shade Control
 - 7. Scene Recall
 - 8. Event Scheduler
 - 9. Customer logo and color scheme
- HH. Optional Control Sequences for Advanced Control:
 - 1. Occupancy adjustments
 - 2. Timeout
 - 3. Control logic (occupancy or vacancy sensor)
 - 4. Lighting Scenes
 - 5. Custom scene adjustment through sliders and press+hold operation
 - 6. Individual zone control override
 - 7. Timeclock Adjustment
 - 8. Modify timeclock activation schedule
 - 9. Select/unselect pre-programmed timeclock events
 - 10. Display all timeclock events
 - 11. Daylight Harvesting Adjustments
 - 12. Minimum dim level
 - 13. Response time
 - 14. Zone control
 - 15. Scene Recall
 - 16. Fade time
 - 17. Color scene recall and saving

TIME CLOCK EVENTS

- II. The lighting control system shall have astronomical time clocked events. 6 time clock events shall be provided.
- JJ. End User shall have the option to create additional time clock events via touch screen or XPanel interfaces

INSTALLATION

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

26 0943 - 28

- KK. Prior to installation, examine work area to verify measurements, and that commencing installation complies with manufacturer's requirements.
- LL. Comply with requirements of Division 26 Sections "Common Work Results for Electrical."
- MM. Do not install network power controls until space is enclosed, HVAC systems are running, and overhead and wet work in space are complete.
- NN. Install network power switching controls in accordance with manufacturer's instructions.
- OO. Grounding: Provide electrical grounding in accordance with NFPA 70.

MANUFACTURER SUPPORTED SERVICES

PP. PRE-WIRE

- 1. Manufacturer shall provide on-site visit during the rough-in stage of the installation. At this time wiring topologies and terminations shall be reviewed with the Contractor.
- QQ. STARTUP
 - 1. Provide manufacturer's system startup and adjustment.
 - 2. Switch each load on and off with manual line test feature of the power switching module before installing processors.
 - 3. Perform operational testing to verify compliance with Specifications. Adjust as required.
- RR. TUNING
 - 1. Within 12 months of the date of Substantial Completion provide onsite service to adjust the system to account for actual occupied conditions.
- SS. TRAINING
 - 1. Factory authorized service representative to instruct owner's staff to adjust, operate and maintain network power switching systems; and provide instruction using the system software.
 - 2. Demonstration: Schedule demonstration with Owner.
 - 3. Training: Train Owner's personnel to operate, maintain, and program network power switching systems. Allow for a minimum of trips to the jobsite to provide additional training as needed.
 - 4. Furnish set of approved submittals, and record drawings of actual installation for Owner's personnel in attendance at training session.

END OF SECTION

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 CRESTRON LIGHTING CONTROLS

26 0943 - 30

SECTION 26 2200

LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes: Distribution and buck-boost, dry-type transformers rated 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 - 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.
- B. Shop Drawings:
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For transformers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Qualification Data: For testing agency.
- C. Source quality-control reports.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2200 - 1

D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 GENERAL TRANSFORMER REQUIREMENTS

- A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Transformers Rated 15 kVA and Larger: Comply with NEMA TP 1 energy-efficiency levels as verified by testing according to NEMA TP 2.
- D. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
- E. Coils: Continuous windings without splices except for taps.
 - 1. Internal Coil Connections: Brazed or pressure type.
 - 2. Coil Material: Copper.
- F. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.
- G. Shipping Restraints: Paint or otherwise color code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2200 - 2

2.3 DISTRIBUTION TRANSFORMERS

- A. Comply with NFPA 70, and list and label as complying with UL 1561.
- B. Provide transformers that are constructed to withstand seismic forces specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."
- C. Cores: One leg per phase.
- D. Enclosure: Ventilated.
 - 1. NEMA 250, Type 3R: Core and coil shall be encapsulated within resin compound utilizing a vacuum pressure impregnation process to seal out moisture and air.
 - 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.
- E. Transformer Enclosure Finish: Comply with NEMA 250.
 - 1. Finish Color: Gray.
- F. Taps for Transformers 3 kVA and Smaller: One 5 percent tap above normal full capacity.
- G. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.
- H. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and four 2.5 percent taps below normal full capacity.
- I. Insulation Class, Smaller than 30 kVA: 185 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature.
- J. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 150-deg C rise above 40-deg C ambient temperature.
- K. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor. Transformers serving gaming loads, heavy computer loads, or other heavy electronics loads, shall have a k-factor rating of 6 minimum.
 - 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
 - 2. Indicate value of K-factor on transformer nameplate.
 - 3. Unit shall meet requirements of NEMA TP 1 when tested according to NEMA TP 2 with a K-factor equal to one.
- L. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 - 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 - 2. Include special terminal for grounding the shield.
- M. Neutral: Rated 200 percent of full load current for K-factor rated transformers.
- N. Wall Brackets: Wall brackets fabricated from design drawings signed and sealed by a licensed structural engineer.

26 2200 - 3

O. Fungus Proofing: Permanent fungicidal treatment for coil and core.

2.4 BUCK-BOOST TRANSFORMERS

- A. Description: Self-cooled, two-winding dry type, rated for continuous duty and with wiring terminals suitable for connection as autotransformer. Transformers shall be listed and labeled as complying with UL 506 or UL 1561.
 - 1. Standard impedance at 60Hz: 2 percent to 5 percent (up to 10 kVA), 4 percent to 6.5 percent (above 10 kVA).
 - 2. Nameplate Rating: Linear load, 60Hz.
 - 3. Insulation Class: 220 deg C system.
 - 4. Temperature Rise: 150 deg C.
 - 5. Core Construction: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 - 6. Coil Conductors: Continuous copper windings, with terminations brazed, welded, or bolted.
 - 7. Coil Impregnation: Vacuum impregnated with polyester resin.
 - 8. Sound Level: Not exceeding values listed above for distribution transformers.
 - 9. Enclosure: Ventilated, NEMA 250, Type 3R.
 - 10. Terminations: Transformer coils shall terminate in mounting pads. Mounting lugs shall be provided on all units up to and including 270 A ratings.
 - 11. Antivibration pads or isolators shall be used between the transformer core and coil and the enclosure.
 - 12. Ground core and coil assembly to enclosure with a flexible copper grounding strap or equivalent.
 - 13. Mounting:
 - a. Ventilated Units up to 750 lb: Suitable for wall, floor, or ceiling mounting (drip plate required).
 - b. Ventilated Units over 750 lb: Suitable for floor mounting only.
 - c. Encapsulated Units up to 285 lb: Suitable for wall or floor mounting.
 - d. Encapsulated Units over 285 lb: Suitable for floor mounting only.
- B. Enclosure: Ventilated, NEMA 250, Type 3R.
 - 1. Finish Color: Gray.

2.5 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 26 0553 "Identification for Electrical Systems."

2.6 SOURCE QUALITY CONTROL

- A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.
 - 1. Resistance measurements of all windings at the rated voltage connections and at all tap connections.
 - 2. Ratio tests at the rated voltage connections and at all tap connections.
 - 3. Phase relation and polarity tests at the rated voltage connections.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2200 - 4

- 4. No load losses, and excitation current and rated voltage at the rated voltage connections.
- 5. Impedance and load losses at rated current and rated frequency at the rated voltage connections.
- 6. Applied and induced tensile tests.
- 7. Regulation and efficiency at rated load and voltage.
- 8. Insulation Resistance Tests:
 - a. High-voltage to ground.
 - b. Low-voltage to ground.
 - c. High-voltage to low-voltage.
- 9. Temperature tests.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
- C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
- D. Verify that ground connections are in place and requirements in Section 26 0526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.
- E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.
- F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall-mounted transformers level and plumb with wall brackets fabricated from design drawings signed and sealed by a licensed structural engineer.
 - 1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.
 - 2. Brace wall-mounted transformers as specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."
- B. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.
- C. Construct concrete bases according to Section 03 3000 "Cast-in-Place Concrete" or Section 03 3053 "Miscellaneous Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 26 0529 "Hangers and Supports for Electrical Systems."

26 2200 - 5

- 1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- D. Secure transformer to concrete base according to manufacturer's written instructions.
- E. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.
- F. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

- A. Ground equipment according to Section 26 0526 "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS for dry-type, air-cooled, low-voltage transformers. Certify compliance with test parameters.
- D. Remove and replace units that do not pass tests or inspections and retest as specified above.
- E. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
 - 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 - 2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
 - 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.
- F. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

- A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.
- B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.
- C. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION

26 2200 - 8

SECTION 26 2413

SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Service and distribution switchboards rated 600 V and less.
 - 2. Surge protection devices.
 - 3. Disconnecting and overcurrent protective devices.
 - 4. Instrumentation.
 - 5. Control power.
 - 6. Accessory components and features.
 - 7. Identification.
 - 8. Mimic bus.

1.3 RELATED SECTIONS

A. Section 26 0574 "Overcurrent Protective Device Arc-Flash Study" for arc-flash study and arcflash label requirements.

1.4 ACTION SUBMITTALS

- A. Product Data: For each switchboard, overcurrent protective device, surge protection device, ground-fault protector, accessory, and component.
 - 1. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
- B. Shop Drawings: For each switchboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types for types other than NEMA 250, Type 1.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Detail short-circuit current rating of switchboards and overcurrent protective devices.
 - 5. Detail utility company's metering provisions with indication of approval by utility company.
 - 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

- 7. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
- 8. Include diagram and details of proposed mimic bus.
- 9. Include schematic and wiring diagrams for power, signal, and control wiring.
- C. Samples: Representative portion of mimic bus with specified material and finish, for color selection.
- D. Delegated Design Submittal:
 - 1. For arc-flash hazard study.
 - 2. For arc-flash labels.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Seismic Qualification Data: Certificates, for switchboards, overcurrent protective devices, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field Quality-Control Reports:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - a. Routine maintenance requirements for switchboards and all installed components.
 - b. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - c. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Potential Transformer Fuses: Equal to 10 percent of quantity installed for each size and type but no fewer than two of each size and type.
 - 2. Control-Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Fuses and Fusible Devices for Fused Circuit Breakers: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
 - 4. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
 - 5. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
 - 6. Indicating Lights: Equal to 10 percent of quantity installed for each size and type but no less than one of each size and type.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.
- B. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.
- B. Remove loose packing and flammable materials from inside switchboards and install temporary electric heating (250 W per section) to prevent condensation.
- C. Handle and prepare switchboards for installation according to NECA 400.

1.10 FIELD CONDITIONS

- A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.
- B. Environmental Limitations:
 - 1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 104 deg F.

- b. Altitude: Not exceeding 6600 feet.
- C. Unusual Service Conditions: NEMA PB 2, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet.
- D. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Architect no fewer than seven days in advance of proposed interruption of electric service.
 - 2. Indicate method of providing temporary electric service.
 - 3. Do not proceed with interruption of electric service without Owner's written permission.
 - 4. Comply with NFPA 70E.

1.11 COORDINATION

- A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.12 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace switchboard enclosures, buswork, overcurrent protective devices, accessories, and factory installed interconnection wiring that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Three years from date of Substantial Completion.
- B. Manufacturer's Warranty: Manufacturer's agrees to repair or replace surge protection devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Switchboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

- 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.
- 2. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.2 SWITCHBOARDS

- A. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NEMA PB 2.
- E. Comply with NFPA 70.
- F. Comply with UL 891.
- G. Front-Connected, Front-Accessible Switchboards:
 - 1. Main Devices: Fixed, individually mounted.
 - 2. Branch Devices: Panel mounted.
 - 3. Sections front and rear aligned.
- H. Front- and Side-Accessible Switchboards:
 - 1. Main Devices: Fixed, individually mounted.
 - 2. Branch Devices: Panel mounted.
 - 3. Section Alignment: Front aligned.
- I. Front- and Rear-Accessible Switchboards:
 - 1. Main Devices: Fixed, individually mounted.
 - 2. Branch Devices: Panel and fixed, individually mounted.
 - 3. Sections front and rear aligned.
- J. Nominal System Voltage: As indicated on the plans.
- K. Main-Bus Continuous: As indicated on the plans.
- L. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Section 26 0548.16 "Seismic Controls for Electrical Systems."
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.

- a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
- b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
- M. Indoor Enclosures: Steel, NEMA 250, Type 1.
- N. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
- O. Outdoor Enclosures: Type 3R.
 - 1. Finish: Factory-applied finish in manufacturer's standard color; undersurfaces treated with corrosion-resistant undercoating.
 - 2. Enclosure: Flat roof; bolt-on rear covers rear hinged doors for each section, with provisions for padlocking.
 - 3. Doors: Personnel door at each end of aisle, minimum width of 30 inches; opening outwards; with panic hardware and provisions for padlocking. At least one door shall be sized to permit the largest single switchboard section to pass through without disassembling doors, hinges, or switchboard section.
 - 4. Accessories: LED luminaires, ceiling mounted; wired to a three-way light switch at each end of aisle; ground-fault circuit interrupter (GFCI) duplex receptacle; emergency battery pack luminaire installed on wall of aisle midway between personnel doors.
 - 5. Walk-in Aisle Heating and Ventilating:
 - a. Factory-installed electric unit heater(s), wall or ceiling mounted, with integral thermostat and disconnect and with capacities to maintain switchboard interior temperature of 40 deg F with outside design temperature of 0 deg F.
 - b. Factory-installed exhaust fan with capacities to maintain switchboard interior temperature of 100 deg F with outside design temperature of 90 deg F.
 - c. Ventilating openings complete with replaceable fiberglass air filters.
 - d. Thermostat: Single stage; wired to control heat and exhaust fan.
- P. Barriers: Between adjacent switchboard sections.
- Q. Insulation and isolation for main bus of main section and main and vertical buses of feeder sections.
- R. Service Entrance Rating: Switchboards intended for use as service entrance equipment shall contain from one to six service disconnecting means with overcurrent protection, a neutral bus with disconnecting link, a grounding electrode conductor terminal, and a main bonding jumper.
- S. Utility Metering Compartment: Barrier compartment and section complying with utility company's requirements; hinged sealable door; buses provisioned for mounting utility company's current transformers and potential transformers or potential taps as required by utility company. If separate vertical section is required for utility metering, match and align with basic switchboard. Provide service entrance label and necessary applicable service entrance features.
- T. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
- U. Removable, Hinged Rear Doors and Compartment Covers: Secured by standard bolts, for access to rear interior of switchboard.

- V. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.
- W. Pull Box on Top of Switchboard:
 - 1. Adequate ventilation to maintain temperature in pull box within same limits as switchboard.
 - 2. Set back from front to clear circuit-breaker removal mechanism.
 - 3. Removable covers shall form top, front, and sides. Top covers at rear shall be easily removable for drilling and cutting.
 - 4. Bottom shall be insulating, fire-resistive material with separate holes for cable drops into switchboard.
 - 5. Cable supports shall be arranged to facilitate cabling and adequate to support cables indicated, including those for future installation.
- X. Buses and Connections: Three phase, four wire unless otherwise indicated.
 - 1. Provide phase bus arrangement A, B, C from front to back, top to bottom, and left to right when viewed from the front of the switchboard.
 - 2. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity, silverplated.
 - 3. Copper feeder circuit-breaker line connections.
 - 4. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position.
 - 5. Ground Bus: 1/4-by-2-inch- hard-drawn copper of 98 percent conductivity, equipped with mechanical connectors for feeder and branch-circuit ground conductors.
 - 6. Main-Phase Buses and Equipment-Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 - 7. Disconnect Links:
 - a. Isolate neutral bus from incoming neutral conductors.
 - b. Bond neutral bus to equipment-ground bus for switchboards utilized as service equipment or separately derived systems.
 - 8. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
 - 9. Isolation Barrier Access Provisions: Permit checking of bus-bolt tightness.
- Y. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.
- Z. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Minimum insulation temperature rating of 105 deg C.
- AA. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components including instruments and instrument transformers.
- BB. Switchboard shall be fully rated.

2.3 SURGE PROTECTION DEVICES

- A. SPDs: Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1449, Type 1.
- B. Features and Accessories:
 - 1. Integral disconnect switch.
 - 2. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 - 3. Indicator light display for protection status.
 - 4. Surge counter.
- C. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 200 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.
- D. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V or 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 1200 V for 480Y/277 V or 700 V for 208Y/120 V.
 - 2. Line to Ground: 1200 V for 480Y/277 V or 1200 V for 208Y/120 V.
 - 3. Line to Line: 2000 V for 480Y/277 V or 1000 V for 208Y/120 V.
- E. Protection modes and UL 1449 VPR for 240/120 V, single-phase, three-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 700 V.
 - 2. Line to Ground: 1000 V.
 - 3. Line to Line: 1000 V.
- F. SCCR: Equal or exceed 200 kA.
- G. Nominal Rating: 20 kA.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long and short time adjustments.
 - d. Ground-fault pickup level, time delay, and I squared t response.

- 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
- 5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.
- 6. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
- 7. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 8. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - e. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
 - f. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 - g. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 - h. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
- B. Insulated-Case Circuit Breaker (ICCB): 100 percent rated, sealed, insulated-case power circuit breaker with interrupting capacity rating to meet available fault current.
 - 1. Fixed circuit-breaker mounting.
 - 2. Two-step, stored-energy closing.
 - 3. Full-function, microprocessor-based trip units with interchangeable rating plug, trip indicators, and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Time adjustments for long- and short-time pickup.
 - c. Ground-fault pickup level, time delay, and I squared t response.
 - 4. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
 - 5. Remote trip indication and control.
 - 6. Communication Capability: Web enabled integral Ethernet communication module and embedded Web server with factory-configured Web pages (HTML file format). Provide functions and features compatible with power monitoring and control system specified in Section 26 0913 "Electrical Power Monitoring and Control."
 - 7. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
- C. Bolted-Pressure Contact Switch: Operating mechanism uses rotary-mechanical-bolting action to produce and maintain high clamping pressure on the switch blade after it engages the stationary contacts.
 - 1. Main-Contact Interrupting Capability: Minimum of 12 times the switch current rating.
 - 2. Operating Mechanism: Manual handle operation to close switch; stores energy in mechanism for opening and closing.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

- a. Electrical Trip: Operation of lever or push-button trip switch, or trip signal from ground-fault relay or remote-control device, causes switch to open.
- b. Mechanical Trip: Operation of mechanical lever, push button, or other device causes switch to open.
- 3. Auxiliary Switches: Factory installed, SPDT, with leads connected to terminal block, and including one set more than quantity required for functional performance indicated.
- 4. Service-Rated Switches: Labeled for use as service equipment.
- 5. Ground-Fault Relay: Comply with UL 1053; self-powered type with mechanical ground-fault indicator, test function, tripping relay with internal memory, and three-phase current transformer/sensor.
 - a. Configuration: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - b. Internal Memory: Integrates the cumulative value of intermittent arcing ground-fault currents and uses the effect to initiate tripping.
 - c. No-Trip Relay Test: Permits ground-fault simulation test without tripping switch.
 - d. Test Control: Simulates ground fault to test relay and switch (or relay only if "notrip" mode is selected).
- 6. Open-Fuse Trip Device: Arranged to trip switch open if a phase fuse opens.
- D. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
- E. Fuses are specified in Section 26 2813 "Fuses."

2.5 CONTROL POWER

- A. Control Circuits: 120-V ac, supplied through secondary disconnecting devices from controlpower transformer.
- B. Control Circuits: 120-V ac, supplied from remote branch circuit.
- C. Electrically Interlocked Main and Tie Circuit Breakers: Two control-power transformers in separate compartments, with interlocking relays, connected to the primary side of each control-power transformer at the line side of the associated main circuit breaker. 120-V secondaries connected through automatic transfer relays to ensure a fail-safe automatic transfer scheme.
- D. Control-Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.
- E. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.

2.6 ACCESSORY COMPONENTS AND FEATURES

- A. Portable Test Set: For testing functions of solid-state trip devices without removing from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.
- B. Spare-Fuse Cabinet: Suitably identified, wall-mounted, lockable, compartmented steel box or cabinet. Arrange for wall mounting.

C. Mounting Accessories: For anchors, mounting channels, bolts, washers, and other mounting accessories, comply with requirements in Section 26 0548.16 "Seismic Controls for Electrical Systems" or manufacturer's instructions.

2.7 IDENTIFICATION

- A. Mimic Bus: Continuously integrated mimic bus factory applied to front of switchboard. Arrange in single-line diagram format, using symbols and letter designations consistent with final mimic-bus diagram.
- B. Coordinate mimic-bus segments with devices in switchboard sections to which they are applied. Produce a concise visual presentation of principal switchboard components and connections.
- C. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Receive, inspect, handle, and store switchboards according to NECA 400.
 - 1. Lift or move panelboards with spreader bars and manufacturer-supplied lifting straps following manufacturer's instructions.
 - 2. Use rollers, slings, or other manufacturer-approved methods if lifting straps are not furnished.
 - 3. Protect from moisture, dust, dirt, and debris during storage and installation.
 - 4. Install temporary heating during storage per manufacturer's instructions.
- B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.
- C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work or that affect the performance of the equipment.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install switchboards and accessories according to NECA 400.
- B. Equipment Mounting: Install switchboards on concrete base, 4-inch nominal thickness. Comply with requirements for concrete base specified in Section 03 3000 "Cast-in-Place Concrete."
 - 1. Install conduits entering underneath the switchboard, entering under the vertical section where the conductors will terminate. Install with couplings flush with the concrete base. Extend 2 inches above concrete base after switchboard is anchored in place.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.

26 2413 - 11

- 3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
- 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 5. Install anchor bolts to elevations required for proper attachment to switchboards.
- 6. Anchor switchboard to building structure at the top of the switchboard if required or recommended by the manufacturer.
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, straps and brackets, and temporary blocking of moving parts from switchboard units and components.
- D. Comply with mounting and anchoring requirements specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."
- E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.
- F. Install filler plates in unused spaces of panel-mounted sections.
- G. Install overcurrent protective devices, surge protection devices, and instrumentation.
 - 1. Set field-adjustable switches and circuit-breaker trip ranges.
- H. Install spare-fuse cabinet.
- I. Comply with NECA 1.

3.3 CONNECTIONS

- A. Bond conduits entering underneath the switchboard to the equipment ground bus with a bonding conductor sized per NFPA 70.
- B. Support and secure conductors within the switchboard according to NFPA 70.
- C. Extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.

3.4 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."
- B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."
- C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform the following tests and inspections:
 - 1. Acceptance Testing:
 - a. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit. Open control and metering circuits within the switchboard, and remove neutral connection to surge protection and other electronic devices prior to insulation test. Reconnect after test.
 - b. Test continuity of each circuit.
 - 2. Test ground-fault protection of equipment for service equipment per NFPA 70.
 - 3. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 4. Correct malfunctioning units on-site where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 5. Perform the following infrared scan tests and inspections, and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front and rear panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchboard 11 months after date of Substantial Completion.
 - c. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 6. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Switchboard will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 0573 "Overcurrent Protective Device Coordination Study."

3.7 PROTECTION

A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories, and to use and reprogram microprocessor-based trip, monitoring, and communication units.

END OF SECTION

SECTION 26 2416

PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.
 - 3. Load centers.
 - 4. Electronic-grade panelboards.

1.3 DEFINITIONS

- A. ATS: Acceptance testing specification.
- B. GFCI: Ground-fault circuit interrupter.
- C. GFEP: Ground-fault equipment protection.
- D. HID: High-intensity discharge.
- E. MCCB: Molded-case circuit breaker.
- F. SPD: Surge protective device.
- G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
 - 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 - 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.

- 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
- 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
- 4. Detail bus configuration, current, and voltage ratings.
- 5. Short-circuit current rating of panelboards and overcurrent protective devices.
- 6. Include evidence of NRTL listing for SPD as installed in panelboard.
- 7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 8. Include wiring diagrams for power, signal, and control wiring.
- 9. Key interlock scheme drawing and sequence of operations.
- 10. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Two spares for each type of panelboard cabinet lock.
 - 2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.
 - 3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NECA 407.

1.10 FIELD CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding minus 22 deg F to plus 104 deg F.
 - b. Altitude: Not exceeding 6600 feet.
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet.
- C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Architect no fewer than two days in advance of proposed interruption of electric service.
 - 2. Do not proceed with interruption of electric service without Owner's written permission.
 - 3. Comply with NFPA 70E.

1.11 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.
- B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.
 - 1. SPD Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 26 0548.16 "Seismic Controls for Electrical Systems."
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NEMA PB 1.
- E. Comply with NFPA 70.
- F. Enclosures: Flush and Surface-mounted, dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - c. Kitchen and Wash-Down Areas: NEMA 250, Type 4X, stainless steel.
 - d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 - 2. Height: 84 inches maximum.
 - 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 - 4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
 - 5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
 - 6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
 - 7. Finishes:
 - a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Same finish as panels and trim.
 - c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
- G. Incoming Mains:
 - 1. Location: Convertible between top and bottom.
 - 2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

- H. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - a. Plating shall run entire length of bus.
 - b. Bus shall be fully rated the entire length.
 - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 - 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
 - 5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
 - 6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.
 - 7. Split Bus: Vertical buses divided into individual vertical sections.
- I. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 - 4. Main and Neutral Lugs: Compression type, with a lug on the neutral bar for each pole in the panelboard.
 - 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 - 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 - 8. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.
 - 9. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.
- J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
- K. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
 - 1. Percentage of Future Space Capacity: 20 percent.
- L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

- 1. Panelboards and overcurrent protective devices rated 240 V or less shall have shortcircuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
- 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
- B. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 1.

2.3 POWER PANELBOARDS

- A. Panelboards: NEMA PB 1, distribution type.
- B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 1. For doors more than 36 inches high, provide two latches, keyed alike.
- C. Mains: Circuit breaker.
- D. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.
- F. Branch Overcurrent Protective Devices: Fused switches.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- B. Mains: Circuit breaker.
- C. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- D. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
- E. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

26 2416 - 6

2.5 LOAD CENTERS

- A. Load Centers: Comply with UL 67.
- B. Mains: Circuit breaker.
- C. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.
- D. Doors: Concealed hinges secured with flush latch with tumbler lock; keyed alike.
- E. Conductor Connectors: Mechanical type for main, neutral, and ground lugs and buses.

2.6 PANELBOARDS SERVING GAMES AND DATA CENTER LOADS

- A. Panelboards: NEMA PB 1; with factory-installed, integral SPD; labeled by an NRTL for compliance with UL 67 and UL 1449 after installing SPD.
- B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
- C. Main Overcurrent Protective Devices: Bolt-on thermal-magnetic circuit breakers.
- D. Branch Overcurrent Protective Devices: Bolt-on thermal-magnetic circuit breakers.
- E. SPD.
 - 1. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 100 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.
 - 2. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V or 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 - a. Line to Neutral: 1200 V for 480Y/277 V or 700 V for 208Y/120 V.
 - b. Line to Ground: 1200 V for 480Y/277 V or 700 V for 208Y/120 V.
 - c. Neutral to Ground: 1200 V for 480Y/277 or V 700 V for 208Y/120 V.
 - d. Line to Line: 2000 V for 480Y/277 V or 1200 V for 208Y/120 V.
 - 3. Protection modes and UL 1449 VPR for 240/120-V, single-phase, three-wire circuits shall not exceed the following:
 - a. Line to Neutral: 700 V.
 - b. Line to Ground: 700 V.
 - c. Neutral to Ground: 700 V.
 - d. Line to Line: 1200 V.
 - 4. SCCR: Equal to the SCCR of the panelboard in which installed or exceed 100 kA.
 - 5. Nominal Rating: 20 kA.
- F. Buses:
 - 1. Copper phase and neutral buses; 200 percent capacity neutral bus and lugs.
 - 2. Copper equipment and isolated ground buses.

2.7 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - a. Inverse time-current element for low-level overloads.
 - b. Instantaneous magnetic trip element for short circuits.
 - c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Electronic Trip Circuit Breakers:
 - a. RMS sensing.
 - b. Field-replaceable rating plug or electronic trip.
 - c. Digital display of settings, trip targets, and indicated metering displays.
 - d. Multi-button keypad to access programmable functions and monitored data.
 - e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 - f. Integral test jack for connection to portable test set or laptop computer.
 - g. Field-Adjustable Settings:
 - 1) Instantaneous trip.
 - 2) Long- and short-time pickup levels.
 - 3) Long and short time adjustments.
 - 4) Ground-fault pickup level, time delay, and I squared T response.
 - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 - 5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
 - 6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
 - 7. Arc-Fault Circuit Interrupter Circuit Breakers: Comply with UL 1699; 120/240-V, single-pole configuration.
 - 8. Subfeed Circuit Breakers: Vertically mounted.
 - 9. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - c. UL listed for reverse connection without restrictive line or load ratings.
 - d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 - f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - g. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 - h. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with fieldadjustable 0.1- to 0.6-second time delay.
 - i. Rating Plugs: Three-pole breakers with ampere ratings greater than 150 amperes shall have interchangeable rating plugs or electronic adjustable trip units.
 - j. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.

- k. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
- I. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
- m. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.
- B. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 - 1. Fuses and Spare-Fuse Cabinet: Comply with requirements specified in Section 26 2813 "Fuses."
 - 2. Fused Switch Features and Accessories:
 - a. Standard ampere ratings and number of poles.
 - b. Mechanical cover interlock with a manual interlock override, to prevent the opening of the cover when the switch is in the on position. The interlock shall prevent the switch from being turned on with the cover open. The operating handle shall have lock-off means with provisions for three padlocks.

2.8 IDENTIFICATION

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Directory card inside panelboard door, mounted in transparent card holder.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.
- D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.9 ACCESSORY COMPONENTS AND FEATURES

- A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
- B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Receive, inspect, handle, and store panelboards according to NECA 407.
- C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Comply with NECA 1.
- C. Install panelboards and accessories according to NECA 407.
- D. Equipment Mounting:
 - 1. Install panelboards on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 3000 "Cast-in-Place Concrete."
 - 2. Attach panelboard to the vertical finished or structural surface behind the panelboard.
 - 3. Comply with requirements for seismic control devices specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."
- E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- F. Comply with mounting and anchoring requirements specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."
- G. Mount top of trim 90 inches above finished floor unless otherwise indicated.
- H. Mount panelboard cabinet plumb and rigid without distortion of box.
- I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

- J. Mount surface-mounted panelboards to steel slotted supports 5/8 inch in depth. Orient steel slotted supports vertically.
- K. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
 - 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.
- L. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- M. Install filler plates in unused spaces.
- N. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.
- O. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.
- P. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 26 0553 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."
- E. Install warning signs complying with requirements in Section 26 0553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

26 2416 - 11

- C. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- D. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers and low-voltage surge arrestors stated in NETA ATS, Paragraph 7.6 Circuit Breakers. Perform optional tests. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 - c. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- E. Panelboards will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 0573 "Overcurrent Protective Device Coordination Study."
- C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.
 - 1. Measure loads during period of normal facility operations.
 - 2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
 - 4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 **PROTECTION**

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION

PANELBOARDS

SECTION 26 2713

ELECTRICITY METERING

PART 1 - GENERAL

1.1 **RELATED DOCUMENTS**

Α. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

Section includes work to accommodate utility company revenue meters, and Owner's electricity Α. meters used to manage the electrical power system.

1.3 DEFINITIONS

KY or KYZ Pulse: Term used by the metering industry to describe a method of measuring Α. consumption of electricity (kWh) that is based on a relay opening and closing in response to the rotation of the disk in the meter. Electronic meters generate pulses electronically.

1.4 **ACTION SUBMITTALS**

- Α. Product Data:
 - 1. For each type of meter.
 - 2. For metering infrastructure components.
- Β. Shop Drawings: For electricity-metering equipment.
 - Include elevation views of front panels of control and indicating devices and control 1. stations.
 - 2. Include diagrams for power, signal, and control wiring.
 - 3 Wire Termination Diagrams and Schedules: Include diagrams for power, signal, and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features. Differentiate between manufacturer-installed and field-installed wiring.
 - 4. Include series-combination rating data for modular meter centers with main disconnect device.

1.5 **INFORMATIONAL SUBMITTALS**

- Α. Qualification Data: For testing agency.
- Field quality-control reports. Β.

17-13 OSU, College of Osteopathic Medicine at **Cherokee Nation Childers Architect** 07-26-19

ELECTRICITY METERING

C. Sample Warranty: For special warranty.

1.6 FIELD CONDITIONS

- Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied Α. by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Architect shall be notified and issued written permission no fewer than two days in advance of proposed interruption of electrical service.

1.7 QUALITY ASSURANCE

Testing Agency Qualifications: An NRTL. Α.

1.8 WARRANTY

- Α. Special Warranty: Manufacturer agrees to repair or replace components of metering equipment that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - Damage from transient voltage surges. a.
 - 2. Warranty Period: Cost to repair or replace any parts for two years from date of Substantial Completion.
 - Extended Warranty Period: Cost of replacement parts (materials only, f.o.b. the nearest 3. shipping point to Project site), for eight years, that failed in service due to transient voltage surges.

1.9 COORDINATION

- Α. **Electrical Service Connections:**
 - 1. Coordinate with utility companies and utility-furnished components.
 - Comply with requirements of utility providing electrical power services. a.
 - b. Coordinate installation and connection of utilities and services, including provision for electricity-metering components.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- Α. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- Β. Comply with UL 916.

17-13 OSU, College of Osteopathic Medicine at **Cherokee Nation** Childers Architect 07-26-19

ELECTRICITY METERING

2.2 UTILITY METERING INFRASTRUCTURE

- A. Install metering accessories furnished by the utility company, complying with its requirements.
- B. Utility-Furnished Meters: Connect data transmission facility of metering equipment installed by the Utility.
 - 1. Data Transmission: Transmit pulse data over control-circuit conductors, classified as Class 1 per NFPA 70, Article 725.
- C. Current-Transformer Cabinets: Comply with requirements of electrical-power utility company.
- D. Meter Sockets:
 - 1. Comply with requirements of electrical-power utility company.
 - 2. Meter Sockets: Steady-state and short-circuit current ratings shall meet indicated circuit ratings.
- E. Modular Meter Center: Factory-coordinated assembly of a main service disconnect device, wireways, meter socket modules, and feeder circuit breakers arranged in adjacent vertical sections complete with interconnecting buses.
 - 1. Comply with requirements of utility company for meter center.
 - a. Comply with UL 67.
 - 2. Housing: NEMA 250, Type 3R enclosure.
 - 3. Meter Socket Rating: Coordinated with connected feeder circuit rating.
 - 4. Minimum Short-Circuit Rating: 65,000 A symmetrical at rated voltage.
 - 5. Steady-state and short-circuit current ratings shall have ratings that match connected circuit ratings.
 - 6. Main Disconnect Device: Circuit breaker, series-combination rated for use with downstream feeder and branch circuit breakers and having an adjustable magnetic trip setting for circuit-breaker frame sizes of 250 A and larger. Comply with requirements in Section 26 2816 "Enclosed Switches and Circuit Breakers." Circuit breakers shall be operable from outside the enclosure to disconnect the unit. Configure cover so it can be opened only when the disconnect switch is open.
 - 7. Feeder Circuit Breakers: Series-combination-rated molded-case units, rated to protect downstream circuit breakers and to house load centers and panelboards that have 10,000-A interrupting capacity.
 - a. Identification: Complying with requirements in Section 26 0553 "Identification for Electrical Systems."
 - b. Physical Protection: Tamper resistant, with hasp for padlock.
 - Surge Protection for Main Disconnect: Factory installed, integrally mounted, UL 1449 Type 1. Comply with Section 26 4313 "Surge Protection for Low-Voltage Electrical Power Circuits."
- F. Arc-Flash Warning Labels;
 - 1. Labels: Comply with requirements for "Arc-Flash Warning Labels" in Section 26 0574 "Overcurrent Protective Device Arc-Flash Study." Apply a 3-1/2-by-5-inch thermal transfer label of high-adhesion polyester for each work location included in the analysis.

26 2713 - 3

- a. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:
 - 1) Location designation.
 - 2) Nominal voltage.
 - 3) Flash protection boundary.
 - 4) Hazard risk category.
 - 5) Incident energy.
 - 6) Working distance.
 - 7) Engineering report number, revision number, and issue date.

2.3 ELECTRICITY METERS

- A. System Description: Able to meter designated activity loads, with or without external alarm, control, and communication capabilities, or other optional features.
 - 1. Comply with ANSI C12.1 and ANSI C12.20, 0.2 accuracy class.
 - 2. Ambient Temperature: Minus 22 deg F to plus 158 deg F.
 - 3. Humidity: Zero to 95 percent, noncondensing.
- B. General Requirements for Meters:
 - Certify that meters comply with ANSI C12.20 requirements by a laboratory accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) of the National Institute of Standards and Technology (NIST). The laboratory shall use test equipment that is certified annually and is traceable to NIST standards.
 - 2. Enclosure: Supplied by meter manufacturer, NEMA 250, Type 3R minimum, with provisions for locking or sealing.
 - 3. Identification: Comply with requirements in Section 26 0553 "Identification for Electrical Systems."
 - a. Type: Split core, complying with recommendation of meter manufacturer.
- C. kWh Meter: Electronic single-phase and three-phase meters, measuring electricity use.
 - 1. Voltage and Phase Configuration: Meter shall be designed for use on circuits with voltage rating and phase configuration indicated for its application.
- D. Current-Transformer Cabinet: Size and configuration as recommended by metering equipment manufacturer for use with indicated connected feeder and sensors.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with equipment installation requirements in NECA 1.
- B. Install meters furnished by utility company. Install raceways and equipment according to utility company's written instructions. Provide empty conduits for metering leads and extend grounding connections as required by utility company.
- C. Install modular meter center according to switchboard installation requirements in NECA 400.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2713 - 4

ELECTRICITY METERING

- D. Install arc-flash labels as required by NFPA 70.
- E. Wiring Method:
 - 1. Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."
 - 2. Minimum conduit size shall be 1-1/4 inch.

3.2 IDENTIFICATION

- A. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."
 - 1. Series Combination Warning Label: Self-adhesive labels, with text as required by NFPA 70.
 - 2. Equipment Identification Labels: Self-adhesive labels with clear protective overlay. For residential meters, provide an additional card holder suitable for printed, weather-resistant card with occupant's name.

END OF SECTION

26 2713 - 6

ELECTRICITY METERING

SECTION 26 2726

WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Straight-blade convenience, hospital-grade, isolated-ground, and tamper-resistant receptacles.
 - 2. USB charger devices.
 - 3. GFCI receptacles.
 - 4. SPD receptacles.
 - 5. Hazardous (classified) location receptacles.
 - 6. Twist-locking receptacles.
 - 7. Pendant cord-connector devices.
 - 8. Cord and plug sets.
 - 9. Toggle switches.
 - 10. Decorator-style convenience.
 - 11. Wall switch sensor light switches with dual technology sensors.
 - 12. Wall switch sensor light switches with passive infrared sensors.
 - 13. Wall switch sensor light switches with ultrasonic sensors.
 - 14. Digital timer light switches.
 - 15. Residential devices.
 - 16. Wall-box dimmers.
 - 17. Wall plates.
 - 18. Floor service outlets.
 - 19. Poke-through assemblies.
 - 20. Prefabricated multioutlet assemblies.
 - 21. Service poles.

1.3 **DEFINITIONS**

- A. Abbreviations of Manufacturers' Names:
 - 1. Cooper: Cooper Wiring Devices; Division of Cooper Industries, Inc.
 - 2. Hubbell: Hubbell Incorporated: Wiring Devices-Kellems.
 - 3. Leviton: Leviton Mfg. Company, Inc.
 - 4. Pass & Seymour: Pass& Seymour/Legrand.
- B. BAS: Building automation system.
- C. EMI: Electromagnetic interference.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

- D. GFCI: Ground-fault circuit interrupter.
- E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- F. RFI: Radio-frequency interference.
- G. SPD: Surge protective device.
- H. UTP: Unshielded twisted pair.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
- C. Samples: One for each type of device and wall plate specified, in each color specified.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packinglabel warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.
- C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 - 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 - 2. Devices shall comply with the requirements in this Section.
- D. Devices for Owner-Furnished Equipment:
 - 1. Receptacles: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.
- E. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

2.2 STRAIGHT-BLADE RECEPTACLES

- A. Duplex Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
- B. Isolated-Ground, Duplex Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 - 1. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.
- C. Tamper-Resistant Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 - 1. Description: Labeled and complying with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.3 USB CHARGER DEVICES

- A. Tamper-Resistant, USB Charger Receptacles: 12 V dc, 2.0 A, USB Type A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 1310, and FS W-C-596.
 - 1. Description: Single-piece, rivetless, nickel-plated, all-brass grounding system. Nickelplated, brass mounting strap.
 - 2. USB Receptacles: Quad, Type A.
 - 3. Line Voltage Receptacles: Dual, two pole, three wire, and self-grounding.

2.4 GFCI RECEPTACLES

- A. General Description:
 - 1. 125 V, 20 A, straight blade, feed-through type, self-test type.
 - 2. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 943 Class A, and FS W-C-596.
 - 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
- B. Duplex GFCI Convenience Receptacles:
 - 1. All 15A and 20A, 125V and 250V non-locking receptacles shall be listed as "Weather Resistant" type in Damp and wet locations.
- C. Tamper-Resistant, Duplex GFCI Convenience Receptacles:

2.5 SPD RECEPTACLES

- A. General Description: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 1449, and FS W-C-596, with integral SPD in line to ground, line to neutral, and neutral to ground.
 - 1. 125 V, 20 A, straight-blade type.
 - 2. SPD Components: Multiple metal-oxide varistors; with a nominal clamp-level rating of 400 V and minimum single transient pulse energy dissipation of 240 J, according to IEEE C62.41.2 and IEEE C62.45.

- 3. Active SPD Indication: Visual and audible, with light visible in face of device to indicate device is "active" or "no longer in service."
- B. Duplex SPD Convenience Receptacles:
- C. Isolated-Ground, Duplex SPD Convenience Receptacles:
 - 1. Grounding: Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.6 HAZARDOUS (CLASSIFIED) LOCATION RECEPTACLES

A. Hazardous (Classified) Locations Receptacles: Comply with NEMA FB 11 and UL 1010.

2.7 TWIST-LOCKING RECEPTACLES

- A. Twist-Lock, Single Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
- B. Twist-Lock, Isolated-Ground, Single Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
 - 1. Grounding: Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.8 PENDANT CORD-CONNECTOR DEVICES

- A. Description:
 - 1. Matching, locking-type plug and receptacle body connector.
 - 2. NEMA WD 6 Configurations L5-20P and L5-20R, heavy-duty grade, and FS W-C-596.
 - 3. Body: Nylon, with screw-open, cable-gripping jaws and provision for attaching external cable grip.
 - 4. External Cable Grip: Woven wire-mesh type made of high-strength, galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.9 CORD AND PLUG SETS

- A. Description:
 - 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 - 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.
 - 3. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.10 TOGGLE SWITCHES

- A. Comply with NEMA WD 1, UL 20, and FS W-S-896.
- B. Switches, 120/277 V, 20 A:
- C. Key-Operated Switches: 120/277 V, 20 A.
 1. Description: Single pole, with factory-supplied key in lieu of switch handle.
- D. Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches: 120/277 V, 20 A; for use with mechanically held lighting contactors.
- E. Key-Operated, Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches: 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.

2.11 WALL-BOX DIMMERS

- A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
- B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.
- C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 - 1. 600 W; dimmers shall require no derating when ganged with other devices. Illuminated when "off."
- D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.
- E. LED Lamp Dimmer Switches: Modular; compatible with LED lamps; trim potentiometer to adjust low-end dimming; capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.12 WALL PLATES

- A. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Color determined by architect.
 - 3. Material for Finished Spaces: 0.035-inch- thick, satin-finished, Type 302 stainless steel.
 - 4. Material for Unfinished Spaces: Galvanized steel.
 - 5. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weatherresistant, die-cast aluminum with lockable cover.

2.13 POKE-THROUGH ASSEMBLIES

A. Description:

- 1. Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service-outlet assembly.
- 2. Comply with UL 514 scrub water exclusion requirements.
- 3. Service-Outlet Assembly: Flush type with four simplex receptacles and space for four RJ-45 jacks complying with requirements in Division 27 specifications.
- 4. Size: Selected to fit nominal 4-inch cored holes in floor and matched to floor thickness.
- 5. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
- 6. Closure Plug: Arranged to close unused 4-inch cored openings and reestablish fire rating of floor.
- 7. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of four, four-pair cables that comply with requirements in Division 27 specifications.

2.14 WALL MOUNTED TV LOCATIONS

- A. Where wall mounted TVs are indication in the plans provide the following:
 - 1. All-in-one power and AV recessed box similar to Legrand Evolution Series.
 - 2. Box shall include one duplex outlet, one coax cable, and one CAT6 cable.
 - 3. Provide all accessories for a complete finish.
 - 4. Boxes shall have a white finish

2.15 FINISHES

- A. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Emergency Power System: Red.
 - 3. SPD Devices: Blue.
 - 4. Isolated-Ground Receptacles: Orange.
- B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:

- 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
- 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
- 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
- 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

- 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
- 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
- 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
- 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 - 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
 - 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 - 8. Tighten unused terminal screws on the device.
 - 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Dimmers:
 - 1. Install dimmers within terms of their listing.
 - 2. Verify that dimmers used for fan-speed control are listed for that application.

- 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

- A. Comply with Section 26 0553 "Identification for Electrical Systems."
- B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL

- A. Test Instruments: Use instruments that comply with UL 1436.
- B. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- C. Perform the following tests and inspections:
 - 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
 - 2. Test Instruments: Use instruments that comply with UL 1436.
 - 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- D. Tests for Convenience Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- E. Test straight-blade convenience outlets in patient-care areas for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz..

- F. Wiring device will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

END OF SECTION

WIRING DEVICES

SECTION 26 2816

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Receptacle switches.
 - 4. Shunt trip switches.
 - 5. Molded-case circuit breakers (MCCBs).
 - 6. Molded-case switches.
 - 7. Enclosures.

1.3 **DEFINITIONS**

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
 - 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 - 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.

26 2816 - 1

- B. Shop Drawings: For enclosed switches and circuit breakers.
 - 1. Include plans, elevations, sections, details, and attachments to other work.
 - 2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 - b. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Fuse Pullers: Two for each size and type.

1.8 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

26 2816 - 2

1.9 FIELD CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 - 2. Altitude: Not exceeding 6600 feet.

1.10 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.2 GENERAL REQUIREMENTS

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- D. Comply with NFPA 70.

2.3 FUSIBLE SWITCHES

- A. Type HD, Heavy Duty:
 - 1. Single throw.
 - 2. Three pole.
 - 3. 600-V ac.
 - 4. 1200 A and smaller.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2816 - 3

- 5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses.
- 6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- B. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
 - 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 5. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating 120-V ac.
 - 6. Hookstick Handle: Allows use of a hookstick to operate the handle.
 - 7. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 8. Service-Rated Switches: Labeled for use as service equipment.

2.4 NONFUSIBLE SWITCHES

- A. Type GD, General Duty, Three Pole, Single Throw, 240-V ac, 600 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- B. Type HD, Heavy Duty, Three Pole, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- D. Type HD, Heavy Duty, Three Pole, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- E. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
 - 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 5. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating 120-V ac.
 - 6. Hookstick Handle: Allows use of a hookstick to operate the handle.
 - 7. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 8. Service-Rated Switches: Labeled for use as service equipment.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2816 - 4

2.5 RECEPTACLE SWITCHES

- A. Type HD, Heavy-Duty, Three Pole, Single-Throw Fusible Switch: 600-V ac, 30A, 60A, or 100 A; UL 98 and NEMA KS 1; horsepower rated, with clips or bolt pads to accommodate specified fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
- B. Interlocking Linkage: Provided between the receptacle and switch mechanism to prevent inserting or removing plug while switch is in the on position, inserting any plug other than specified, and turning switch on if an incorrect plug is inserted or correct plug has not been fully inserted into the receptacle.
- C. Receptacle: Polarized, three-phase, four-wire receptacle (fourth wire connected to enclosure ground lug).
- D. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
 - 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 5. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating 120-V ac.
 - 6. Hookstick Handle: Allows use of a hookstick to operate the handle.
 - 7. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 8. Service-Rated Switches: Labeled for use as service equipment.

2.6 SHUNT TRIP SWITCHES

- A. General Requirements: Comply with ASME A17.1, UL 50, and UL 98, with Class J fuse block and 200-kA interrupting and short-circuit current rating.
- B. Type HD, Heavy-Duty, Three Pole, Single-Throw Fusible Switch: 600-V ac, 30A, 60A, 100 A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, with clips or bolt pads to accommodate specified fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
- C. Type HD, Heavy-Duty, Three Pole, Single-Throw Nonfusible Switch: 600-V ac, 30A, 60A, 100 A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
- D. Control Circuit: 120-V ac; obtained from integral control power transformer, with primary and secondary fuses, with a control power source of enough capacity to operate shunt trip, pilot, indicating and control devices.
- E. Accessories:
 - 1. Oiltight key switch for key-to-test function.
 - 2. Oiltight red ON pilot light.
 - 3. Isolated neutral lug; 200 percent rating.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2816 - 5

- 4. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.
- 5. Form C alarm contacts that change state when switch is tripped.
- 6. Three-pole, double-throw, fire-safety and alarm relay; 120-V ac coil voltage.
- 7. Three-pole, double-throw, fire-alarm voltage monitoring relay complying with NFPA 72.
- 8. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 9. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
- 10. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 11. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating 120-V ac.
- 12. Hookstick Handle: Allows use of a hookstick to operate the handle.
- 13. Lugs: Mechanical type, suitable for number, size, and conductor material.
- 14. Service-Rated Switches: Labeled for use as service equipment.

2.7 MOLDED-CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be constructed using glass-reinforced insulating material. Current carrying components shall be completely isolated from the handle and the accessory mounting area.
- B. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker handle shall be over center, be trip free, and reside in a tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon shall be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with a push-to-trip button, located on the face of the circuit breaker to mechanically operate the circuit-breaker tripping mechanism for maintenance and testing purposes.
- C. The maximum ampere rating and UL, IEC, or other certification standards with applicable voltage systems and corresponding interrupting ratings shall be clearly marked on face of circuit breaker. Circuit breakers shall be 100 percent rated.
- D. MCCBs shall be equipped with a device for locking in the isolated position.
- E. Lugs shall be suitable for167 deg F rated wire.
- F. Standard: Comply with UL 489 with interrupting capacity to comply with available fault currents.
- G. Thermal-Magnetic Circuit Breakers: Inverse time-current thermal element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- H. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, fieldadjustable trip setting.
- I. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 - 1. Instantaneous trip.
 - 2. Long- and short-time pickup levels.
 - 3. Long- and short-time time adjustments.
 - 4. Ground-fault pickup level, time delay, and I-squared t response.

26 2816 - 6

- J. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.
- K. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.
- L. Ground-Fault Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
- M. Ground-Fault Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).
- N. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 - 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 - 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 - 5. Communication Capability: Circuit-breaker-mounted Integral communication module with functions and features compatible with power monitoring and control system, specified in Section 26 0913 "Electrical Power Monitoring and Control."
 - 6. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 - 7. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 - 8. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 - 9. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.
 - 10. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 - 11. Electrical Operator: Provide remote control for on, off, and reset operations.
 - 12. Accessory Control Power Voltage: Integrally mounted, self-powered; 120-V ac.

2.8 MOLDED-CASE SWITCHES

- A. Description: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.
- B. Standard: Comply with UL 489 with interrupting capacity to comply with available fault currents.
- C. Features and Accessories:
 - 1. Standard frame sizes and number of poles.
 - 2. Lugs:
 - a. Mechanical type, suitable for number, size, trip ratings, and conductor material.
 - b. Lugs shall be suitable for 167 deg F rated wire.

26 2816 - 7

- 3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
- 4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
- 5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
- 6. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic switch contacts, "b" contacts operate in reverse of switch contacts.
- 7. Alarm Switch: One NO contact that operates only when switch has tripped.
- 8. Key Interlock Kit: Externally mounted to prohibit switch operation; key shall be removable only when switch is in off position.
- 9. Zone-Selective Interlocking: Integral with ground-fault shunt trip unit; for interlocking ground-fault protection function.
- 10. Electrical Operator: Provide remote control for on, off, and reset operations.
- 11. Accessory Control Power Voltage: Integrally mounted, self-powered; 120-V ac.

2.9 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
- B. Enclosure Finish: The enclosure shall be finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1).
- C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.
- D. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover. The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.
- E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.
- F. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

17-13 OSU, College of Osteopathic Medicine atENCLOSED SWITCHESCherokee Nation26 2816 - 8AND CIRCUIT BREAKERSChilders Architect07-26-1907-26-19

1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION

- A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Architect no fewer than seven days in advance of proposed interruption of electric service.
 - 2. Indicate method of providing temporary electric service.
 - 3. Do not proceed with interruption of electric service without Owner's written permission.
 - 4. Comply with NFPA 70E.

3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

- A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Kitchen and Wash-Down Areas: NEMA 250, Type 4X, stainless steel.
 - 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 - 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 - 6. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7 with cover attached by Type 316 stainless steel bolts.

3.4 INSTALLATION

- A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- C. Comply with mounting and anchoring requirements specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."
- D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- E. Install fuses in fusible devices.
- F. Comply with NFPA 70 and NECA 1.

3.5 IDENTIFICATION

A. Comply with requirements in Section 26 0553 "Identification for Electrical Systems."

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2816 - 9

- 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
- 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections for Switches:
 - 1. Visual and Mechanical Inspection:
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, grounding, and clearances.
 - c. Verify that the unit is clean.
 - d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 - e. Verify that fuse sizes and types match the Specifications and Drawings.
 - f. Verify that each fuse has adequate mechanical support and contact integrity.
 - g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Use a low-resistance ohmmeter.
 - a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 - a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 - h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
 - i. Verify correct phase barrier installation.
 - j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.
 - 2. Electrical Tests:
 - a. Perform resistance measurements through bolted connections with a lowresistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 - b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 - c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage

26 2816 - 10

in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

- d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.
- e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."
- D. Tests and Inspections for Molded Case Circuit Breakers:
 - 1. Visual and Mechanical Inspection:
 - a. Verify that equipment nameplate data are as described in the Specifications and shown on the Drawings.
 - b. Inspect physical and mechanical condition.
 - c. Inspect anchorage, alignment, grounding, and clearances.
 - d. Verify that the unit is clean.
 - e. Operate the circuit breaker to ensure smooth operation.
 - f. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Use a low-resistance ohmmeter.
 - a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 - a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 - g. Inspect operating mechanism, contacts, and chutes in unsealed units.
 - h. Perform adjustments for final protective device settings in accordance with the coordination study.
 - 2. Electrical Tests:
 - a. Perform resistance measurements through bolted connections with a lowresistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 - b. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with circuit breaker closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.
 - c. Perform a contact/pole resistance test. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not

26 2816 - 11

available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

- d. Perform insulation resistance tests on all control wiring with respect to ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid state components, follow manufacturer's recommendation. Insulation resistance values shall be no less than two megohms.
- e. Determine the following by primary current injection:
 - 1) Long-time pickup and delay. Pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
 - 2) Short-time pickup and delay. Short-time pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
 - 3) Ground-fault pickup and time delay. Ground-fault pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.
 - 4) Instantaneous pickup. Instantaneous pickup values shall be as specified and within manufacturer's published tolerances.
- f. Test functionality of the trip unit by means of primary current injection. Pickup values and trip characteristics shall be as specified and within manufacturer's published tolerances.
- g. Perform minimum pickup voltage tests on shunt trip and close coils in accordance with manufacturer's published data. Minimum pickup voltage of the shunt trip and close coils shall be as indicated by manufacturer.
- h. Verify correct operation of auxiliary features such as trip and pickup indicators; zone interlocking; electrical close and trip operation; trip-free, anti-pump function; and trip unit battery condition. Reset all trip logs and indicators. Investigate units that do not function as designed.
- i. Verify operation of charging mechanism. Investigate units that do not function as designed.
- 3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 4. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- E. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 2816 - 12

- 1. Test procedures used.
- 2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
- 3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.7 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 0573 "Overcurrent Protective Device Coordination Study."

END OF SECTION

SECTION 26 3213

ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes packaged engine-generator sets for emergency power supply with the following features:
 - 1. Natural Gas or Diesel engine as shown on drawings.
 - 2. Unit-mounted cooling system.
 - 3. Unit-mounted and remote-mounted control and monitoring.
 - 4. Performance requirements for sensitive loads.
 - 5. Fuel system.
 - 6. Outdoor enclosure.
- B. Related Requirements:
 - 1. Section 26 3600 "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine-generator sets.

1.3 DEFINITIONS

- A. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.
- B. LP: Liquid petroleum.
- C. EPS: Emergency power supply.
- D. EPSS: Emergency power supply system.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 2. Include thermal damage curve for generator.
 - 3. Include time-current characteristic curves for generator protective device.

26 3213 - 1

- 4. Include fuel consumption in gallons per hour at 0.8 power factor at 0.5, 0.75 and 1.0 times generator capacity.
- 5. Include generator efficiency at 0.8 power factor at 0.5, 0.75 and 1.0 times generator capacity.
- 6. Include air flow requirements for cooling and combustion air in cfm at 0.8 power factor, with air supply temperature of 95, 80, 70, and 50 deg F. Provide drawings showing requirements and limitations for location of air intake and exhausts.
- 7. Include generator characteristics, including, but not limited to kw rating, efficiency, reactances, and short-circuit current capability.
- B. Shop Drawings:
 - 1. Include plans and elevations for engine-generator set and other components specified. Indicate access requirements affected by height of subbase fuel tank.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Identify fluid drain ports and clearance requirements for proper fluid drain.
 - 4. Design calculations for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 - 5. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include base weights.
 - 6. Include diagrams for power, signal, and control wiring. Complete schematic, wiring, and interconnection diagrams showing terminal markings for EPS equipment and functional relationship between all electrical components.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer.
- B. Seismic Qualification Certificates: For engine-generator set, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: With engine and generator mounted on rails identify center of gravity and total weight including full fuel tank, supplied enclosure, external silencer, skid-mounted load bank, and each piece of equipment not integral to the engine-generator set, and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Source quality-control reports, including, but not limited to the following:
 - 1. Certified summary of prototype-unit test report.
 - 2. Certified Test Reports: For components and accessories that are equivalent, but not identical, to those tested on prototype unit.
 - 3. Certified Summary of Performance Tests: Certify compliance with specified requirement to meet performance criteria for sensitive loads.
 - 4. Report of factory test on units to be shipped for this Project, showing evidence of compliance with specified requirements.
 - 5. Report of sound generation.
 - 6. Report of exhaust emissions showing compliance with applicable regulations.

ENGINE GENERATORS

- 7. Certified Torsional Vibration Compatibility: Comply with NFPA 110.
- D. Field quality-control reports.
- E. Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - a. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.
 - b. Operating instructions laminated and mounted adjacent to generator location.
 - c. Training plan.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: One for every 10 of each type and rating but no fewer than one of each.
 - 2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.
 - 3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.
 - 4. Tools: Each tool listed by part number in operations and maintenance manual.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved by manufacturer.
- B. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 5 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Every owner has specific requirements for generator specifications. Call the engineer PRIOR to submitting a bid to see which manufacturers are approved. If you submit a bid without prior approval of the manufacturer, you do so at your own risk.
- B. Source Limitations: Obtain packaged generator sets and auxiliary components through one source from a single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Engine-generator set housing, subbase fuel tank, engine-generator set, batteries, battery racks, silencers, load banks, and sound attenuating equipment, accessories, and components shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Shake-table testing shall comply with ICC-ES AC156. Testing shall be performed with all fluids at worst case normal levels. Water shall be substituted for diesel fuel in fuel tank during test.
 - 3. Component Importance Factor: 1.5.
- B. ASME Compliance: Comply with ASME B15.1.
- C. NFPA Compliance:
 - 1. Comply with NFPA 37.
 - 2. Comply with NFPA 70.
 - 3. Comply with NFPA 99.
- D. UL Compliance: Comply with UL 2200.
- E. Engine Exhaust Emissions: Comply with EPA Tier 2 requirements and applicable state and local government requirements.
- F. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries due to sound emitted by generator set including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.
- G. Environmental Conditions: Engine-generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 - 1. Ambient Temperature: Minus 15 to plus 40 deg C.
 - 2. Relative Humidity: Zero to 95 percent.
 - 3. Altitude: Appropriate for project site.

26 3213 - 4

2.3 ASSEMBLY DESCRIPTION

- A. Factory-assembled and -tested, water-cooled engine, with brushless generator and accessories.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a testing agency acceptable to authorities having jurisdiction, and marked for intended location and application.
- C. EPSS Class: Engine-generator set shall be classified as a Class 48 in accordance with NFPA 110.
- D. Induction Method: Turbocharged.
- E. Governor: Adjustable isochronous, with speed sensing.
- F. Emissions: Comply with EPA Tier 2 requirements.
- G. Mounting Frame: Structural steel framework to maintain alignment of mounted components without depending on concrete foundation. Provide lifting attachments sized and spaced to prevent deflection of base during lifting and moving.
 - 1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and generator-set center of gravity.
- H. Capacities and Characteristics:
 - 1. Power Output Ratings: Nominal ratings as indicated at 0.8 power factor excluding power required for the continued and repeated operation of the unit and auxiliaries, with capacity as required to operate as a unit as evidenced by records of prototype testing.
 - 2. Output Connections: Three-phase, four wire.
 - 3. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.
- I. Generator-Set Performance:
 - 1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
 - 2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent stepload increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
 - 3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
 - 4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 - 5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
 - 6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
 - 7. Sustained Short-Circuit Current: For a three-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not

26 3213 - 5

less than 10 seconds and then clear the fault automatically, without damage to generator system components.

- 8. Start Time: Comply with NFPA 110, Type 10, system requirements.
- J. Generator-Set Performance for Sensitive Loads:
 - 1. Oversizing generator compared with the rated power output of the engine is permissible to meet specified performance.
 - a. Nameplate Data for Oversized Generator: Show ratings required by the Contract Documents rather than ratings that would normally be applied to generator size installed.
 - 2. Steady-State Voltage Operational Bandwidth: 1 percent of rated output voltage from no load to full load.
 - 3. Transient Voltage Performance: Not more than 10 percent variation for 50 percent stepload increase or decrease. Voltage shall recover and remain within the steady-state operating band within 0.5 second.
 - 4. Steady-State Frequency Operational Bandwidth: Plus or minus 0.25 percent of rated frequency from no load to full load.
 - 5. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 - 6. Transient Frequency Performance: Less than 2-Hz variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within three seconds.
 - 7. Output Waveform: At no load, harmonic content measured line to neutral shall not exceed 2 percent total with no slot ripple. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
 - 8. Sustained Short-Circuit Current: For a three-phase, bolted short circuit at system output terminals, system shall supply a minimum of 300 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to winding insulation or other generator system components.
 - 9. Excitation System: Performance shall be unaffected by voltage distortion caused by nonlinear load.
 - a. Provide permanent magnet excitation for power source to voltage regulator.
 - 10. Start Time: Comply with NFPA 110, Type 10, system requirements.

2.4 ENGINE

- A. Fuel: As indicated on drawings.
- B. Rated Engine Speed: 1800 rpm.
- C. Maximum Piston Speed for Four-Cycle Engines: 2250 fpm.
- D. Lubrication System: The following items are mounted on engine or skid:
 - 1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
 - 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.

- 3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.
- E. Jacket Coolant Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity.
- F. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine-generatorset mounting frame and integral engine-driven coolant pump.
 - 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 - 2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
 - 3. Expansion Tank: Constructed of welded steel plate and rated to withstand maximum closed-loop coolant system pressure for engine used. Equip with gage glass and petcock.
 - 4. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
 - 5. Coolant Hose: Flexible assembly with inside surface of nonporous rubber and outer covering of aging-, ultraviolet-, and abrasion-resistant fabric.
 - a. Rating: 50-psig maximum working pressure with coolant at 180 deg F, and noncollapsible under vacuum.
 - b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.
- G. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 - 1. Minimum sound attenuation of 25 dB at 500 Hz.
 - 2. Sound level measured at a distance of 25 feet from exhaust discharge after installation is complete shall be 78 dBA or less.
- H. Air-Intake Filter: Heavy-duty, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.
- I. Starting System: 12-V electric, with negative ground.
 - 1. Components: Sized so they are not damaged during a full engine-cranking cycle with ambient temperature at maximum specified in "Performance Requirements" Article.
 - 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
 - 3. Cranking Cycle: As required by NFPA 110 for system level specified.
 - 4. Battery: Lead acid, with capacity within ambient temperature range specified in "Performance Requirements" Article to provide specified cranking cycle at least three times without recharging.
 - 5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
 - 6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 10 deg C regardless of external ambient temperature within range specified in "Performance Requirements" Article. Include accessories required to support and fasten batteries in place. Provide ventilation to exhaust battery gases.

- 7. Battery Stand: Factory-fabricated, two-tier metal with acid-resistant finish designed to hold the quantity of battery cells required and to maintain the arrangement to minimize lengths of battery interconnections.
- 8. Battery-Charging Alternator: Factory mounted on engine with solid-state voltage regulation and 35 A minimum continuous rating.
- 9. Battery Charger: Current-limiting, automatic-equalizing and float-charging type designed for Lead acid batteries. Unit shall comply with UL 1236 and include the following features:
 - a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 - b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 deg F to 140 deg F to prevent overcharging at high temperatures and undercharging at low temperatures.
 - c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
 - d. Ammeter and Voltmeter: Flush mounted in door. Meters shall indicate charging rates.
 - e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
 - f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

2.5 DIESEL FUEL-OIL SYSTEM

- A. Comply with NFPA 30.
- B. Piping: Fuel-oil piping shall be Schedule 40 black steel, complying with requirements in Section 23 1113 "Facility Fuel-Oil Piping." Cast iron, aluminum, copper, and galvanizing shall not be used in the fuel-oil system.
- C. Main Fuel Pump: Mounted on engine to provide primary fuel flow under starting and load conditions.
- D. Fuel Filtering: Remove water and contaminants larger than 1 micron.
- E. Relief-Bypass Valve: Automatically regulates pressure in fuel line and returns excess fuel to source.
- F. Subbase-Mounted, Double-Wall, Fuel-Oil Tank: Factory installed and piped, complying with UL 142 fuel-oil tank. Features include the following:
 - 1. Tank level indicator.
 - 2. Fuel-Tank Capacity: Minimum 133 percent of total fuel required for periodic maintenance operations between fuel refills, plus fuel for the hours of continuous operation for indicated EPSS class.
 - 3. Leak detection in interstitial space.
 - 4. Vandal-resistant fill cap.

2.6 CONTROL AND MONITORING

- A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When mode-selector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms.
- B. Manual Starting System Sequence of Operation: Switching on-off switch on the generator control panel to the on position starts generator set. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms.
- C. Provide minimum run time control set for 15 minutes with override only by operation of a remote emergency-stop switch.
- D. Comply with UL 508A.
- E. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the generator set. Mounting method shall isolate the control panel from generator-set vibration. Panel shall be powered from the engine-generator set battery.
- F. Indicating Devices : As required by NFPA 110 for Level 1 system, including the following:
 - 1. AC voltmeter.
 - 2. AC ammeter.
 - 3. AC frequency meter.
 - 4. EPS supplying load indicator.
 - 5. Ammeter and voltmeter phase-selector switches.
 - 6. DC voltmeter (alternator battery charging).
 - 7. Engine-coolant temperature gage.
 - 8. Engine lubricating-oil pressure gage.
 - 9. Running-time meter.
 - 10. Current and Potential Transformers: Instrument accuracy class.
- G. Protective Devices and Controls in Local Control Panel: Shutdown devices and common visual alarm indication as required by NFPA 110 for Level 1 system, including the following:
 - 1. Start-stop switch.
 - 2. Overcrank shutdown device.
 - 3. Overspeed shutdown device.
 - 4. Coolant high-temperature shutdown device.
 - 5. Coolant low-level shutdown device.
 - 6. Low lube oil pressure shutdown device.
 - 7. Air shutdown damper shutdown device when used.
 - 8. Overcrank alarm.
 - 9. Overspeed alarm.
 - 10. Coolant high-temperature alarm.
 - 11. Coolant low-temperature alarm.
 - 12. Coolant low-level alarm.
 - 13. Low lube oil pressure alarm.
 - 14. Air shutdown damper alarm when used.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 3213 - 9

ENGINE GENERATORS

- 15. Lamp test.
- 16. Contacts for local and remote common alarm.
- 17. Coolant high-temperature prealarm.
- 18. Generator-voltage adjusting rheostat.
- 19. Main fuel tank low-level alarm.
 - a. Low fuel level alarm shall be initiated when the level falls below that required for operation for the duration required in "Fuel Tank Capacity" Paragraph in "Diesel Fuel-Oil System" Article.
- 20. Run-Off-Auto switch.
- 21. Control switch not in automatic position alarm.
- 22. Low-starting air pressure alarm.
- 23. Low-starting hydraulic pressure alarm.
- 24. Low cranking voltage alarm.
- 25. Battery-charger malfunction alarm.
- 26. Battery low-voltage alarm.
- 27. Battery high-voltage alarm.
- 28. Generator overcurrent protective device not closed alarm.
- H. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.
- I. Common Remote Panel with Common Audible Alarm: Comply with NFPA 110 requirements for Level 1 systems. Include necessary contacts and terminals in control and monitoring panel. Remote panel shall be powered from the engine-generator set battery.
- J. Remote Alarm Annunciator: Comply with NFPA 99. An LED labeled with proper alarm conditions shall identify each alarm event, and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-mounting type to suit mounting conditions indicated.
 - 1. Overcrank alarm.
 - 2. Coolant low-temperature alarm.
 - 3. High engine temperature prealarm.
 - 4. High engine temperature alarm.
 - 5. Low lube oil pressure alarm.
 - 6. Overspeed alarm.
 - 7. Low fuel main tank alarm.
 - 8. Low coolant level alarm.
 - 9. Low cranking voltage alarm.
 - 10. Contacts for local and remote common alarm.
 - 11. Audible-alarm silencing switch.
 - 12. Air shutdown damper when used.
 - 13. Run-Off-Auto switch.
 - 14. Control switch not in automatic position alarm.
 - 15. Fuel tank derangement alarm.
 - 16. Fuel tank high-level shutdown of fuel supply alarm.
 - 17. Lamp test.
 - 18. Low cranking voltage alarm.
 - 19. Generator overcurrent protective device not closed.

- K. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.
- L. Remote Emergency-Stop Switch: Flush; wall mounted, unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.7 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Overcurrent protective devices for the entire EPSS shall be coordinated to optimize selective tripping when a short circuit occurs. Coordination of protective devices shall consider both utility and EPSS as the voltage source.
 - 1. Overcurrent protective devices for the EPSS shall be accessible only to authorized personnel.
- B. Generator Circuit Breaker: Molded-case, thermal-magnetic type; 100 percent rated; complying with UL 489.
 - 1. Tripping Characteristic: Designed specifically for generator protection.
 - 2. Trip Rating: Matched to generator output rating.
 - 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 - 4. Mounting: Adjacent to or integrated with control and monitoring panel.
- C. Generator Circuit Breaker: Molded-case, electronic-trip type; 100 percent rated; complying with UL 489.
 - 1. Tripping Characteristics: Adjustable long-time and short-time delay and instantaneous.
 - 2. Trip Settings: Selected to coordinate with generator thermal damage curve.
 - 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 - 4. Mounting: Adjacent to or integrated with control and monitoring panel.
- D. Generator Circuit Breaker: Insulated-case, electronic-trip type; 100 percent rated; complying with UL 489.
 - 1. Tripping Characteristics: Adjustable long-time and short-time delay and instantaneous.
 - 2. Trip Settings: Selected to coordinate with generator thermal damage curve.
 - 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 - 4. Mounting: Adjacent to or integrated with control and monitoring panel.
- E. Generator Disconnect Switch: Molded-case type, 100 percent rated.
 - 1. Trip Rating: Matched to generator output rating.
 - 2. Shunt Trip: Connected to trip switch when signaled by generator protector or by other protective devices.
- F. Generator Protector: Microprocessor-based unit shall continuously monitor current level in each phase of generator output, integrate generator heating effect over time, and predict when thermal damage of alternator will occur. When signaled by generator protector or other generator-set protective devices, a shunt-trip device in the generator disconnect switch shall

26 3213 - 11

open the switch to disconnect the generator from load circuits. Protector performs the following functions:

- 1. Initiates a generator overload alarm when generator has operated at an overload equivalent to 110 percent of full-rated load for 60 seconds. Indication for this alarm is integrated with other generator-set malfunction alarms. Contacts shall be available for load shed functions.
- 2. Under single or three-phase fault conditions, regulates generator to 300 percent of rated full-load current for up to 10 seconds.
- 3. As overcurrent heating effect on the generator approaches the thermal damage point of the unit, protector switches the excitation system off, opens the generator disconnect device, and shuts down the generator set.
- 4. Senses clearing of a fault by other overcurrent devices and controls recovery of rated voltage to avoid overshoot.
- G. Ground-Fault Indication: Comply with NFPA 70, "Emergency System" signals for ground fault.
 - 1. Indicate ground fault with other generator-set alarm indications.
 - 2. Trip generator protective device on ground fault.

2.8 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

- A. Comply with NEMA MG 1.
- B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.
- C. Electrical Insulation: Class H or Class F.
- D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required. Provide six lead alternator.
- E. Range: Provide limited range of output voltage by adjusting the excitation level.
- F. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.
- G. Enclosure: Dripproof.
- H. Instrument Transformers: Mounted within generator enclosure.
- I. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified and as required by NFPA 110.
 - 1. Adjusting Rheostat on Control and Monitoring Panel: Provide plus or minus 5 percent adjustment of output-voltage operating band.
 - 2. Maintain voltage within 15 percent on one step, full load.
 - 3. Provide anti-hunt provision to stabilize voltage.
 - 4. Maintain frequency within 5 percent and stabilize at rated frequency within 2 seconds.
- J. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.

- K. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.
- L. Subtransient Reactance: 12 percent, maximum.

2.9 OUTDOOR GENERATOR-SET ENCLOSURE

- A. Description: Vandal-resistant, sound-attenuating, weatherproof steel housing, wind resistant up to 100 mph. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.
- B. Description: Prefabricated or pre-engineered galvanized-steel-clad, integral structural-steelframed, walk-in enclosure, erected on concrete foundation.
 - 1. Structural Design and Anchorage: Comply with ASCE 7 for wind loads up to 100 mph.
 - 2. Seismic Design: Comply with seismic requirements in Section 26 0548.16 "Seismic Controls for Electrical Systems."
 - 3. Hinged Doors: With padlocking provisions.
 - 4. Muffler Location: Within enclosure.
- C. Engine Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for 2 hours with ambient temperature at top of range specified in system service conditions.
 - 1. Louvers: Fixed-engine, cooling-air inlet and discharge. Storm-proof and drainable louvers prevent entry of rain and snow.
 - 2. Ventilation: Provide temperature-controlled exhaust fan interlocked to prevent operation when engine is running.
- D. Convenience Outlets: Factory wired, GFCI. Arrange for external electrical connection.

2.10 MOTORS

- A. Description: NEMA MG 1, Design B, medium induction random-wound, squirrel cage motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- E. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- F. Temperature Rise: Match insulation rating.
- G. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- H. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 3213 - 13

ENGINE GENERATORS

I. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in electrical Sections.

2.11 VIBRATION ISOLATION DEVICES

- A. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a nonslip pattern and galvanized-steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.
 - 1. Material: Standard neoprene separated by steel shims.
 - 2. Shore "A" Scale Durometer Rating: 30.
 - 3. Number of Layers: Four.
 - 4. Minimum Deflection: 1 inch.
- B. Comply with requirements in Section 23 2116 Hydronic Piping Specialties" for vibration isolation and flexible connectors materials for steel piping.
- C. Comply with requirements in Section 23 3113 "Metal Ducts" for vibration isolation and flexible connector materials for exhaust shroud and ductwork.
- D. Vibration isolation devices shall not be used to accommodate misalignments or to make bends.

2.12 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.13 SOURCE QUALITY CONTROL

- A. Prototype Testing: Factory test engine-generator set using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.
 - 1. Tests: Comply with NFPA 110, Level 1 Energy Converters and with IEEE 115.
- B. Project-Specific Equipment Tests: Before shipment, factory test engine-generator set and other system components and accessories manufactured specifically for this Project. Perform tests at rated load and power factor. Include the following tests:
 - 1. Test components and accessories furnished with installed unit that are not identical to those on tested prototype to demonstrate compatibility and reliability.
 - 2. Test generator, exciter, and voltage regulator as a unit.
 - 3. Full load run.
 - 4. Maximum power.
 - 5. Voltage regulation.
 - 6. Transient and steady-state governing.
 - 7. Single-step load pickup.
 - 8. Safety shutdown.
 - 9. Report factory test results within 10 days of completion of test.

26 3213 - 14

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine-generator performance.
- B. Examine roughing-in for piping systems and electrical connections. Verify actual locations of connections before packaged engine-generator installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Architect no fewer than two working days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Owner's written permission.

3.3 INSTALLATION

- A. Comply with packaged engine-generator manufacturers' written installation and alignment instructions and with NFPA 110.
- B. Equipment Mounting:
 - 1. Provide a generator pad. Engage a structural engineer to design the pad as required to meet manufacturer's recommendations.
 - 2. Install packaged engine generators on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 03 3000 "Cast-in-Place Concrete."
 - 3. Coordinate size and location of concrete bases for packaged engine generators and remote radiators mounted on grade. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- C. Install packaged engine-generator to provide access, without removing connections or accessories, for periodic maintenance.
- D. Install packaged engine-generator with elastomeric isolator pads having a minimum deflection of 1 inch on 4-inch-high concrete base. Secure sets to anchor bolts installed in concrete bases. Concrete base construction is specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."
- E. Install condensate drain piping to muffler drain outlet full size of drain connection with a shutoff valve, stainless-steel flexible connector, and Schedule 40, black steel pipe with welded joints.

26 3213 - 15

ENGINE GENERATORS

- F. Installation requirements for piping materials and flexible connectors are specified in Section 23 2116 "Hydronic Piping Specialties." Copper and galvanized steel shall not be used in the fuel-oil piping system.
- G. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.4 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping and specialties.
- B. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged enginegenerator to allow service and maintenance.
- C. Connect cooling-system water piping to engine-generator set and heat exchanger with flexible connectors.
- D. Connect engine exhaust pipe to engine with flexible connector.
- E. Connect fuel piping to engines with a gate valve and union and flexible connector.
 - 1. Diesel storage tanks, tank accessories, piping, valves, and specialties for fuel systems are specified in Section 23 1113 "Facility Fuel-Oil Piping."
 - 2. Vent gas pressure regulators outside building a minimum of 60 inches from building openings.
- F. Ground equipment according to Section 26 0526 "Grounding and Bonding for Electrical Systems."
- G. Connect wiring according to Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables." Provide a minimum of one 90 degree bend in flexible conduit routed to the generator set from a stationary element.
- H. Balance single-phase loads to obtain a maximum of 10 percent unbalance between any two phases.

3.5 IDENTIFICATION

- A. Identify system components according to Section 23 0553 "Identification for HVAC Piping and Equipment" and Section 26 0553 "Identification for Electrical Systems."
- B. Install a sign indicating the generator neutral is bonded to the main service neutral at the main service location.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections.

26 3213 - 16

ENGINE GENERATORS

- B. Tests and Inspections:
 - 1. Perform tests recommended by manufacturer and each visual and mechanical inspection and electrical and mechanical test listed in the first two subparagraphs as specified in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - a. Visual and Mechanical Inspection
 - 1) Compare equipment nameplate data with drawings and specifications.
 - 2) Inspect physical and mechanical condition.
 - 3) Inspect anchorage, alignment, and grounding.
 - 4) Verify the unit is clean.
 - b. Electrical and Mechanical Tests
 - 1) Perform insulation-resistance tests in accordance with IEEE 43.
 - a) Machines larger than 200 horsepower. Test duration shall be 10 minutes. Calculate polarization index.
 - b) Machines 200 horsepower or less. Test duration shall be one minute. Calculate the dielectric-absorption ratio.
 - 2) Test protective relay devices.
 - 3) Verify phase rotation, phasing, and synchronized operation as required by the application.
 - 4) Functionally test engine shutdown for low oil pressure, overtemperature, overspeed, and other protection features as applicable.
 - 5) Conduct performance test in accordance with NFPA 110.
 - 6) Verify correct functioning of the governor and regulator.
 - 2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here including, but not limited to, single-step full-load pickup test.
 - 3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 - a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 - b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 - c. Verify acceptance of charge for each element of the battery after discharge.
 - d. Verify that measurements are within manufacturer's specifications.
 - 4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and floatcharging conditions.
 - 5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.
 - 6. Exhaust-System Back-Pressure Test: Use a manometer with a scale exceeding 40-inch wg. Connect to exhaust line close to engine exhaust manifold. Verify that back pressure at full-rated load is within manufacturer's written allowable limits for the engine.
 - 7. Exhaust Emissions Test: Comply with applicable government test criteria.
 - 8. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.

- 9. Harmonic-Content Tests: Measure harmonic content of output voltage at 25 percent and 100 percent of rated linear load. Verify that harmonic content is within specified limits.
- 10. Noise Level Tests: Measure A-weighted level of noise emanating from generator-set installation, including engine exhaust and cooling-air intake and discharge, at four locations 25 feet from edge of the generator enclosure Insert location for measurement, and compare measured levels with required values.
- C. Coordinate tests with tests for transfer switches and run them concurrently.
- D. Test instruments shall have been calibrated within the last 12 months, traceable to NIST Calibration Services, and adequate for making positive observation of test results. Make calibration records available for examination on request.
- E. Leak Test: After installation, charge exhaust, coolant, and fuel systems and test for leaks. Repair leaks and retest until no leaks exist.
- F. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation for generator and associated equipment.
- G. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- H. Remove and replace malfunctioning units and retest as specified above.
- I. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.
- J. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- K. Infrared Scanning: After Substantial Completion, but not more than 60 days after final acceptance, perform an infrared scan of each power wiring termination and each bus connection while running with maximum load. Remove all access panels so terminations and connections are accessible to portable scanner.
 - 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan 11 months after date of Substantial Completion.
 - 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 3. Record of Infrared Scanning: Prepare a certified report that identifies terminations and connections checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.7 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, provide 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include quarterly exercising to check for proper starting, load transfer, and running under load. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Provide parts and supplies same as those used in the manufacture and installation of original equipment.

26 3213 - 18

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators.

END OF SECTION

26 3213 - 20

ENGINE GENERATORS

SECTION 26 3600

TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes automatic transfer switches rated 600 V and less.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for transfer switches.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, details showing minimum clearances, conductor entry provisions, gutter space, and installed features and devices.
 - 2. Include material lists for each switch specified.
 - 3. Single-Line Diagram: Show connections between transfer switch, bypass/isolation switch, power sources, and load; and show interlocking provisions for each combined transfer switch and bypass/isolation switch.
 - 4. Riser Diagram: Show interconnection wiring between transfer switches, bypass/isolation switches, annunciators, and control panels.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer-authorized service representative.
- B. Seismic Qualification Certificates: For transfer switches, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

26 3600 - 1

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - a. Features and operating sequences, both automatic and manual.
 - b. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications:
 - 1. Member company of NETA.
 - a. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 FIELD CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service:
 - 1. Notify Architect no fewer than two days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Owner's written permission.

1.8 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of transfer switch or transfer switch components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA ICS 1.

- C. Comply with NFPA 99.
- D. Comply with NFPA 110.
- E. Comply with UL 1008 unless requirements of these Specifications are stricter.
- F. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.
- G. Tested Fault-Current Closing and Short-Circuit Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.
 - 1. Where transfer switch includes internal fault-current protection, rating of switch and trip unit combination shall exceed indicated fault-current value at installation location.
 - 2. Short-time withstand capability for three cycles.
- H. Repetitive Accuracy of Solid-State Controls: All settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.
- I. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.62. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.
- J. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electricmotor-operated mechanism. Switches for emergency or standby purposes shall be mechanically and electrically interlocked in both directions to prevent simultaneous connection to both power sources unless closed transition.
- K. Service-Rated Transfer Switch:
 - 1. Comply with UL 869A and UL 489.
 - 2. Provide terminals for bonding the grounding electrode conductor to the grounded service conductor.
 - 3. In systems with a neutral, the bonding connection shall be on the neutral bus.
 - 4. Provide removable link for temporary separation of the service and load grounded conductors.
 - 5. Surge Protective Device: Service rated.
 - 6. Ground-Fault Protection: Comply with UL 1008 for normal bus.
 - 7. Service Disconnecting Means: Externally operated, manual mechanically actuated.
- L. Neutral Terminal: Solid and fully rated unless otherwise indicated.
- M. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, by color-code or by numbered or lettered wire and cable with printed markers at terminations. Color-coding and wire and cable markers are specified in Section 26 0553 "Identification for Electrical Systems."
 - 1. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated.
 - 2. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated.
 - 3. Control Wiring: Equipped with lugs suitable for connection to terminal strips.
 - 4. Accessible via rear access.

TRANSFER SWITCHES

N. Enclosures: General-purpose NEMA 250, Type 3R, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.2 MOLDED-CASE-TYPE AUTOMATIC TRANSFER SWITCHES

- A. Comply with Level 1 equipment according to NFPA 110.
- B. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.
 - 1. Limitation: Switches using contactor-based components are unacceptable.
 - 2. Switch Action: Double throw; mechanically held in both directions.
 - 3. Contacts: Silver composition or silver alloy for load-current switching.
 - 4. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 5. Material: Hard-drawn copper, 98 percent conductivity.
 - 6. Main and Neutral Lugs: Mechanical type.
 - 7. Ground Lugs and Bus-Configured Terminators: Mechanical type.
 - 8. Ground bar.
 - 9. Connectors shall be marked for conductor size and type according to UL 1008.
- C. Automatic Open-Transition (break-before-make) Transfer Switches: Interlocked to prevent the load from being closed on both sources at the same time.
 - 1. Sources shall be mechanically and electrically interlocked to prevent closing both sources on the load at the same time.
- D. Digital Communication Interface: Matched to capability of remote annunciator or annunciator and control panel.
- E. Transfer Switches Based on Molded-Case-Switch Components: Comply with UL 489 and UL 869A.
- F. Automatic Transfer-Switch Controller Features:
 - 1. Controller operates through a period of loss of control power.
 - 2. Undervoltage Sensing for Each Phase of Normal and Alternative Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage shall be adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.
 - 3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.
 - 4. Time Delay for Retransfer to Normal Source: Adjustable from zero to 30 minutes, and factory set for 10 minutes. Override shall automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.
 - 5. Test Switch: Simulate normal-source failure.
 - 6. Switch-Position Pilot Lights: Indicate source to which load is connected.
 - 7. Source-Available Indicating Lights: Supervise sources via transfer-switch normal- and emergency-source sensing circuits.
 - a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."

- b. Emergency Power Supervision: Red light with nameplate engraved "Emergency Source Available."
- 8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.
- 9. Transfer Override Switch: Overrides automatic retransfer control so automatic transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.
- 10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.
- 11. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.
- 12. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods shall be adjustable from 10 to 30 minutes. Factory settings shall be for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:
 - a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
 - b. Push-button programming control with digital display of settings.
 - c. Integral battery operation of time switch when normal control power is unavailable.
- G. Large-Motor-Load Power Transfer:
 - 1. In-Phase Monitor: Factory-wired, internal relay controls transfer so contacts close only when the two sources are synchronized in phase and frequency. Relay shall compare phase relationship and frequency difference between normal and emergency sources and initiate transfer when both sources are within 15 electrical degrees, and only if transfer can be completed within 60 electrical degrees. Transfer shall be initiated only if both sources are within 2 Hz of nominal frequency and 70 percent or more of nominal voltage.
 - 2. Motor Disconnect and Timing Relay Controls: Designated starters in loss of power scenario shall disconnect motors before transfer and reconnect them selectively at an adjustable time interval after transfer. Control connection to motor starters shall be through wiring external to automatic transfer switch. Provide adjustable time delay between 1 and 60 seconds for reconnecting individual motor loads. Provide relay contacts rated for motor-control circuit inrush and for actual seal currents to be encountered.

2.3 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect components, assembled switches, and associated equipment according to UL 1008. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.
- B. Prepare test and inspection reports.
 - 1. For each of the tests required by UL 1008, performed on representative devices, for emergency systems. Include results of test for the following conditions:

- a. Overvoltage.
- b. Undervoltage.
- c. Loss of supply voltage.
- d. Reduction of supply voltage.
- e. Alternative supply voltage or frequency is at minimum acceptable values.
- f. Temperature rise.
- g. Dielectric voltage-withstand; before and after short-circuit test.
- h. Overload.
- i. Contact opening.
- j. Endurance.
- k. Short circuit.
- I. Short-time current capability.
- m. Receptacle withstand capability.
- n. Insulating base and supports damage.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Floor-Mounting Switch: Anchor to floor by bolting.
 - 1. Install transfer switches on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 3000 "Cast-in-Place Concrete."
 - 2. Comply with requirements for seismic control devices specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."
 - 3. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.
 - 4. Provide workspace and clearances required by NFPA 70.
- B. Annunciator and Control Panel Mounting: Flush in wall unless otherwise indicated.
- C. Identify components according to Section 26 0553 "Identification for Electrical Systems."
- D. Set field-adjustable intervals and delays, relays, and engine exerciser clock.
- E. Comply with NECA 1.

3.2 CONNECTIONS

- A. Wiring to Remote Components: Match type and number of cables and conductors to generator sets, motor controls, control, and communication requirements of transfer switches as recommended by manufacturer. Increase raceway sizes at no additional cost to Owner if necessary to accommodate required wiring.
- B. Wiring Method: Install cables in raceways and cable trays except within electrical enclosures. Conceal raceway and cables except in unfinished spaces.
 - 1. Comply with requirements for raceways and boxes specified in Section 26 0533 "Raceways and Boxes for Electrical Systems."
- C. Ground equipment according to Section 26 0526 "Grounding and Bonding for Electrical Systems."

- D. Connect wiring according to Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."
- E. Connect twisted pair cable according to Section 26 0523 "Control-Voltage Electrical Power Cables."
- F. Route and brace conductors according to manufacturer's written instructions and Section 26 0529 "Hangers and Supports for Electrical Systems." Do not obscure manufacturer's markings and labels.
- G. Brace and support equipment according to Section 26 0548.16 "Seismic Controls for Electrical Systems."
- H. Final connections to equipment shall be made with liquidtight, flexible metallic conduit no more than 18 inches in length.

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. After installing equipment, test for compliance with requirements according to NETA ATS.
 - 2. Visual and Mechanical Inspection:
 - a. Compare equipment nameplate data with Drawings and Specifications.
 - b. Inspect physical and mechanical condition.
 - c. Inspect anchorage, alignment, grounding, and required clearances.
 - d. Verify that the unit is clean.
 - e. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.
 - f. Verify that manual transfer warnings are attached and visible.
 - g. Verify tightness of all control connections.
 - h. Inspect bolted electrical connections for high resistance using one of the following methods, or both:
 - 1) Use of low-resistance ohmmeter.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data.
 - i. Perform manual transfer operation.
 - j. Verify positive mechanical interlocking between normal and alternate sources.
 - k. Perform visual and mechanical inspection of surge arresters.
 - I. Inspect control power transformers.
 - 1) Inspect for physical damage, cracked insulation, broken leads, tightness of connections, defective wiring, and overall general condition.
 - 2) Verify that primary and secondary fuse or circuit-breaker ratings match Drawings.
 - 3) Verify correct functioning of drawout disconnecting contacts, grounding contacts, and interlocks.
 - 3. Electrical Tests:
 - a. Perform insulation-resistance tests on all control wiring with respect to ground.

- b. Perform a contact/pole-resistance test. Compare measured values with manufacturer's acceptable values.
- c. Verify settings and operation of control devices.
- d. Calibrate and set all relays and timers.
- e. Verify phase rotation, phasing, and synchronized operation.
- f. Perform automatic transfer tests.
- g. Verify correct operation and timing of the following functions:
 - 1) Normal source voltage-sensing and frequency-sensing relays.
 - 2) Engine start sequence.
 - 3) Time delay on transfer.
 - 4) Alternative source voltage-sensing and frequency-sensing relays.
 - 5) Automatic transfer operation.
 - 6) Interlocks and limit switch function.
 - 7) Time delay and retransfer on normal power restoration.
 - 8) Engine cool-down and shutdown feature.
- 4. Measure insulation resistance phase-to-phase and phase-to-ground with insulationresistance tester. Include external annunciation and control circuits. Use test voltages and procedure recommended by manufacturer. Comply with manufacturer's specified minimum resistance.
 - a. Check for electrical continuity of circuits and for short circuits.
 - b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 - c. Verify that manual transfer warnings are properly placed.
 - d. Perform manual transfer operation.
- 5. After energizing circuits, perform each electrical test for transfer switches stated in NETA ATS and demonstrate interlocking sequence and operational function for each switch at least three times.
 - a. Simulate power failures of normal source to automatic transfer switches and retransfer from emergency source with normal source available.
 - b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 - c. Verify time-delay settings.
 - d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 - e. Test bypass/isolation unit functional modes and related automatic transfer-switch operations.
 - f. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for one pole deviating by more than 50 percent from other poles.
 - g. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cooldown and shutdown.
- 6. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
 - a. Verify grounding connections and locations and ratings of sensors.
- B. Coordinate tests with tests of generator and run them concurrently.

- C. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- D. Transfer switches will be considered defective if they do not pass tests and inspections.
- E. Remove and replace malfunctioning units and retest as specified above.
- F. Prepare test and inspection reports.
- G. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner.
 - 1. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 2. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
 - 3. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

3.4 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment.
- B. Training shall include testing ground-fault protective devices and instructions to determine when the ground-fault system shall be retested. Include instructions on where ground-fault sensors are located and how to avoid negating the ground-fault protection scheme during testing and circuit modifications.
- C. Coordinate this training with that for generator equipment.

END OF SECTION

26 3600 - 10

TRANSFER SWITCHES

SECTION 26 4113

LIGHTNING PROTECTION FOR STRUCTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes lightning protection for structures.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For air terminals and mounting accessories.
 - 1. Layout of the lightning protection system, along with details of the components to be used in the installation.
 - 2. Include indications for use of raceway, data on how concealment requirements will be met, and calculations required by NFPA 780 for bonding of grounded and isolated metal bodies.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer and manufacturer. Include data on listing or certification by UL.
- B. Certification, signed by Contractor, that roof adhesive is approved by manufacturer of roofing material.
- C. Field quality-control reports.
- D. Comply with recommendations in NFPA 780, Annex D, "Inspection and Maintenance of Lightning Protection Systems," for maintenance of the lightning protection system.
- E. Other Informational Submittals: Plans showing dimensioned as-built locations of grounding features, including the following:
 - 1. Ground rods.
 - 2. Ground loop conductor.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Certified by UL, trained and approved for installation of units required for this Project.
- B. System Certificate:
 - 1. UL Master Label.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

- 2. LPI System Certificate.
- 3. UL Master Label Recertification.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 780, "Definitions" Article.

1.6 COORDINATION

- A. Coordinate installation of lightning protection with installation of other building systems and components, including electrical wiring, supporting structures and building materials, metal bodies requiring bonding to lightning protection components, and building finishes.
- B. Coordinate installation of air terminals attached to roof systems with roofing manufacturer and Installer.
- C. Flashings of through-roof assemblies shall comply with roofing manufacturers' specifications.

PART 2 - PRODUCTS

2.1 LIGHTNING PROTECTION SYSTEM COMPONENTS

- A. Comply with UL 96 and NFPA 780.
- B. Roof-Mounted Air Terminals: NFPA 780, Class I, copper unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. East Coast Lightning Equipment Inc.
 - b. ERICO International Corporation.
 - c. <u>Harger</u>.
 - d. Heary Bros. Lightning Protection Co. Inc.
 - e. Independent Protection Co.
 - f. Preferred Lightning Protection.
 - g. Robbins Lightning, Inc.
 - h. <u>Thompson Lightning Protection, Inc</u>.
 - i. National Lightning Protection Corporation.
 - 2. Air Terminals More than 24 Inches Long: With brace attached to the terminal at not less than half the height of the terminal.
 - 3. Single-Membrane, Roof-Mounted Air Terminals: Designed specifically for single-membrane roof system materials. Comply with requirements in roofing Sections.
- C. Main and Bonding Conductors: Copper.
- D. Ground Loop Conductor: The same size and type as the main conductor except tinned.
- E. Ground Rods: Copper-clad steel; 3/4 inch in diameter by 10 feet long.
- F. Heavy-Duty, Stack-Mounted, Lightning Protection Components: Solid copper.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install lightning protection components and systems according to UL 96A and NFPA 780.
- B. Install conductors with direct paths from air terminals to ground connections. Avoid sharp bends.
- C. Conceal the following conductors:
 - 1. System conductors.
 - 2. Down conductors.
 - 3. Interior conductors.
 - 4. Conductors within normal view of exterior locations at grade within 200 feet of building.
- D. Cable Connections: Use crimped or bolted connections for all conductor splices and connections between conductors and other components. Use exothermic-welded connections in underground portions of the system.
- E. Cable Connections: Use exothermic-welded connections for all conductor splices and connections between conductors and other components.
 - 1. Exception: In single-ply membrane roofing, exothermic-welded connections may be used only below the roof level.
- F. Air Terminals on Single-Ply Membrane Roofing: Comply with roofing membrane and adhesive manufacturer's written instructions.
- G. Bond extremities of vertical metal bodies exceeding 60 feet in length to lightning protection components.
- H. Ground Loop: Install ground-level, potential equalization conductor and extend around the perimeter of structure.
 - 1. Bury ground ring not less than 24 inches from building foundation.
 - 2. Bond ground terminals to the ground loop.
 - 3. Bond grounded building systems to the ground loop conductor within 12 feet of grade level.
- I. Bond lightning protection components with intermediate-level interconnection loop conductors to grounded metal bodies of building at 60-foot intervals.

3.2 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 0544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.3 CORROSION PROTECTION

- A. Do not combine materials that can form an electrolytic couple that will accelerate corrosion in the presence of moisture unless moisture is permanently excluded from junction of such materials.
- B. Use conductors with protective coatings where conditions cause deterioration or corrosion of conductors.

3.4 FIELD QUALITY CONTROL

- A. Notify Architect at least 48 hours in advance of inspection before concealing lightning protection components.
- B. UL Inspection: Meet requirements to obtain a UL Master Label for system.
- C. LPI System Inspection: Meet requirements to obtain an LPI System Certificate.

END OF SECTION

SECTION 26 4313

SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes field-mounted SPDs for low-voltage (120 to 600 V) power distribution and control equipment.
- B. Related Requirements:
 - 1. Section 26 2413 "Switchboards" for factory-installed SPDs.
 - 2. Section 26 2416 "Panelboards" for factory-installed SPDs.

1.3 **DEFINITIONS**

- A. Inominal: Nominal discharge current.
- B. MCOV: Maximum continuous operating voltage.
- C. Mode(s), also Modes of Protection: The pair of electrical connections where the VPR applies.
- D. MOV: Metal-oxide varistor; an electronic component with a significant non-ohmic current-voltage characteristic.
- E. OCPD: Overcurrent protective device.
- F. SCCR: Short-circuit current rating.
- G. SPD: Surge protective device.
- H. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 2. Copy of UL Category Code VZCA certification, as a minimum, listing the tested values for

17-13 OSU, College of Osteopathic Medicine at		SURGE PROTECTION FOR
Cherokee Nation	26 4313 - 1	LOW-VOLTAGE
Childers Architect		ELECTRICAL POWER
07-26-19		CIRCUITS

VPRs, Inominal ratings, MCOVs, type designations, OCPD requirements, model numbers, system voltages, and modes of protection.

1.5 INFORMATIONAL SUBMITTALS

- Field quality-control reports. Α.
- В. Sample Warranty: For manufacturer's special warranty.

1.6 **CLOSEOUT SUBMITTALS**

Α. Maintenance Data: For SPDs to include in maintenance manuals.

1.7 WARRANTY

- Manufacturer's Warranty: Manufacturer agrees to replace or replace SPDs that fail in materials Α. or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 **GENERAL SPD REQUIREMENTS**

- Α. SPD with Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- Β. Comply with NFPA 70.
- C. Comply with UL 1449.
- D. MCOV of the SPD shall be the nominal system voltage.

2.2 SERVICE ENTRANCE SUPPRESSOR

- Α. SPDs: Comply with UL 1449, Type 1.
- В. SPDs: Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1449, Type 1
 - 1. SPDs with the following features and accessories:
 - Integral disconnect switch. a.
 - Internal thermal protection that disconnects the SPD before damaging internal b. suppressor components.
 - Indicator light display for protection status. c.
 - Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally d.

17-13 OSU, College of Osteopathic Medicine at		SURGE PROTECTION FOR
Cherokee Nation	26 4313 - 2	LOW-VOLTAGE
Childers Architect		ELECTRICAL POWER
07-26-19		CIRCUITS

closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.

- e. Surge counter.
- C. Comply with UL 1283.
- D. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 200 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.
- E. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V or 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 1200 V for 480Y/277 V and 700 V for 208Y/120 V.
 - 2. Line to Ground: 1200 V for 480Y/277 V and 1200 V for 208Y/120 V.
 - 3. Line to Line: 2000 V for 480Y/277 V and 1000 V for 208Y/120 V.
- F. Protection modes and UL 1449 VPR for 240/120 V, single-phase, three-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 700 V.
 - 2. Line to Ground: 700 V.
 - 3. Line to Line: 1000 V.
- G. SCCR: Equal or exceed 200 kA.
- H. Inominal Rating: 20 kA.

2.3 PANEL SUPPRESSORS

- A. SPDs: Comply with UL 1449, Type 1.
 - 1. Include LED indicator lights for power and protection status.
 - 2. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 - 3. Include Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
- B. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 100 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.
- C. Comply with UL 1283.
- D. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V or 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 1200 V for 480Y/277 V and 700 V for 208Y/120 V.
 - 2. Line to Ground: 1200 V for 480Y/277 V and 700 V for 208Y/120 V.

17-13 OSU, College of Osteopathic Medicine at		SURGE PROTECTION FOR
Cherokee Nation	26 4313 - 3	LOW-VOLTAGE
Childers Architect		ELECTRICAL POWER
07-26-19		CIRCUITS

- 3. Neutral to Ground: 1200 V for 480Y/277 V and 700 V for 208Y/120 V.
- 4. Line to Line: 2000 V for 480Y/277 V and 1200 V for 208Y/120 V
- E. Protection modes and UL 1449 VPR for 240/120-V, single-phase, three-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 700 V.
 - 2. Line to Ground: 700 V.
 - 3. Neutral to Ground: 700 V.
 - 4. Line to Line: 1200 V.
- F. SCCR: Equal or exceed 200 kA.
- G. Inominal Rating: 20 kA.

2.4 ENCLOSURES

- A. Indoor Enclosures: NEMA 250, Type 1.
- B. Outdoor Enclosures: NEMA 250, Type 3R.

2.5 CONDUCTORS AND CABLES

- A. Power Wiring: Same size as SPD leads, complying with Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Class 2 Control Cables: Multiconductor cable with copper conductors not smaller than No. 18 AWG, complying with Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cables: Multiconductor cable with copper conductors not smaller than No. 14 AWG, complying with Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Install an OCPD or disconnect as required to comply with the UL listing of the SPD.
- C. Install SPDs with conductors between suppressor and points of attachment as short and straight as possible, and adjust circuit-breaker positions to achieve shortest and straightest leads. Do not splice and extend SPD leads unless specifically permitted by manufacturer. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
- D. Use crimped connectors and splices only. Wire nuts are unacceptable.
- E. Wiring:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 4313 - 4

SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

- 1. Power Wiring: Comply with wiring methods in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."
- 2. Controls: Comply with wiring methods in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

3.2 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative.
 - 1. Compare equipment nameplate data for compliance with Drawings and Specifications.
 - 2. Inspect anchorage, alignment, grounding, and clearances.
 - 3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.
- B. An SPD will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.3 STARTUP SERVICE

- A. Complete startup checks according to manufacturer's written instructions.
- B. Do not perform insulation-resistance tests of the distribution wiring equipment with SPDs installed. Disconnect SPDs before conducting insulation-resistance tests, and reconnect them immediately after the testing is over.
- C. Energize SPDs after power system has been energized, stabilized, and tested.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to operate and maintain SPDs.

END OF SECTION

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 4313 - 6

SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

SECTION 26 5119

LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following types of LED luminaires:
 - 1. Cylinder.
 - 2. Downlight.
 - 3. Highbay, linear.
 - 4. Linear industrial.
 - 5. Lowbay.
 - 6. Parking garage.
 - 7. Recessed linear.
 - 8. Strip light.
 - 9. Surface mount, linear.
 - 10. Surface mount, nonlinear.
 - 11. Suspended, linear.
 - 12. Suspended, nonlinear.
 - 13. Materials.
 - 14. Finishes.
 - 15. Luminaire support.
- B. Related Requirements:
 - 1. Section 26 0923"Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. LED: Light-emitting diode.
- F. Lumen: Measured output of lamp and luminaire, or both.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 5119 - 1

LED INTERIOR LIGHTING

G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.
 - 3. Include physical description and dimensions of luminaires.
 - 4. Include emergency lighting units, including batteries and chargers.
 - 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 - 6. Photometric data and adjustment factors based on laboratory tests, complying with IES Lighting Measurements Testing and Calculation Guides, of each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project IES LM-79 and IES LM-80.
 - a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
 - b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
- B. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
- C. Samples: For each luminaire and for each color and texture with standard factory-applied finish.
- D. Samples for Initial Selection: For each type of luminaire with custom factory-applied finishes.
 - 1. Include Samples of luminaires and accessories involving color and finish selection.
- E. Samples for Verification: For each type of luminaire.
 - 1. Include Samples of luminaires and accessories to verify finish selection.
- F. Product Schedule: For luminaires and lamps.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Luminaires.
 - 2. Suspended ceiling components.
 - 3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches of the plane of the luminaires.

LED INTERIOR LIGHTING

- 4. Structural members to which **equipment and or** luminaires will be attached.
- 5. Initial access modules for acoustical tile, including size and locations.
- 6. Items penetrating finished ceiling, including the following:
 - a. Other luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Ceiling-mounted projectors.
- 7. Moldings.
- B. Qualification Data: For testing laboratory providing photometric data for luminaires.
- C. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- D. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- E. Product Certificates: For each type of luminaire.
- F. Product Test Reports: For each luminaire, for tests performed by **a qualified testing agency**.
- G. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: **Ten for every 100** of each type and rating installed. Furnish at least one of each type.
 - 2. Diffusers and Lenses: **One for every 100** of each type and rating installed. Furnish at least one of each type.
 - 3. Globes and Guards: **One for every 20** of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
- B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.
- C. Provide luminaires from a single manufacturer for each luminaire type.
- D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.
- E. Mockups: For interior luminaires in room or module mockups, complete with power and control connections.
 - 1. Obtain Architect's approval of luminaires in mockups before starting installations.
 - 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: **Five** year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to **ASCE 7**.
- B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 - 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

26 5119 - 4

2.2 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Standards:
 - 1. ENERGY STAR certified.
 - 2. California Title 24 compliant.
 - 3. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
 - 4. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
 - 5. UL Listing: Listed for damp location.
 - 6. Recessed luminaires shall comply with NEMA LE 4.
 - 7. User Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61 or IEC 60061-1.
- C. CRI of **minimum of 80 <Insert number**>. CCT as specified on drawings.
- D. Rated lamp life of **50,000** hours to L90.
- E. Lamps dimmable from 100 percent to 0 percent of maximum light output.
- F. Internal driver.
- G. Nominal Operating Voltage: **120 V ac**.
 - 1. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
- H. Housings:
 - 1. **Extruded-aluminum** housing and heat sink.
 - 2. **Powder-coat** finish.

2.3 MATERIALS

- A. Metal Parts:
 - 1. Free of burrs and sharp corners and edges.
 - 2. Sheet metal components shall be steel unless otherwise indicated.
 - 3. Form and support to prevent warping and sagging.
- B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- C. Diffusers and Globes:
 - 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 2. Glass: Annealed crystal glass unless otherwise indicated.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 5119 - 5

LED INTERIOR LIGHTING

- 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
- D. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp characteristics:
 - "USE ONLY" and include specific lamp type. a.
 - Lamp diameter, shape, size, wattage, and coating. b.
 - CCT and CRI for all luminaires. C.

2.4 **METAL FINISHES**

Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining Α. components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.5 LUMINAIRE SUPPORT

- Comply with requirements in Section 26 0529 "Hangers and Supports for Electrical Systems" for Α. channel and angle iron supports and nonmetallic channel and angle supports.
- Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish Β. same as luminaire.
- C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage.
- D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.
- E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 **EXAMINATION**

- Α. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- Examine roughing-in for luminaire to verify actual locations of luminaire and electrical Β. connections before luminaire installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 **TEMPORARY LIGHTING**

If approved by the Architect, use selected permanent luminaires for temporary lighting. When Α. construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

LED INTERIOR LIGHTING

3.3 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.
- D. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Provide support for luminaire without causing deflection of ceiling or wall.
 - 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.
- E. Flush-Mounted Luminaire Support:
 - 1. Secured to outlet box.
 - 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 - 3. Trim ring flush with finished surface.
- F. Wall-Mounted Luminaire Support:
 - 1. Attached to structural members in walls.
 - 2. Do not attach luminaires directly to gypsum board.
- G. Ceiling-Mounted Luminaire Support:
 - 1. Ceiling mount with two 5/32-inch- diameter aircraft cable supports adjustable to 120 inches in length.
 - 2. Ceiling mount with **pendant mount**
 - 3. Ceiling mount with hook mount.
- H. Suspended Luminaire Support:
 - 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 - 2. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
 - 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and **wire support** for suspension for each unit length of luminaire chassis, including one at each end.
 - 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- I. Ceiling-Grid-Mounted Luminaires:
 - 1. Secure to any required outlet box.
 - 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 - 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

26 5119 - 7

J. Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Comply with requirements for startup specified in Section 26 0943.16 "Addressable-Luminaire Lighting Controls."
- B. Comply with requirements for startup specified in Section 26 0943.23 "Relay-Based Lighting Controls."

3.7 ADJUSTING

- A. Occupancy Adjustments: When requested within **12** months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to **two** visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.
 - 1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
 - 2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 - 3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION

26 5119 - 9

LED INTERIOR LIGHTING

SECTION 26 5619

LED EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
 - 2. Luminaire supports.
 - 3. Luminaire-mounted photoelectric relays.
- B. Related Requirements:
 - 1. Section 26 0923"Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 **DEFINITIONS**

- A. CCT: Correlated color temperature.
- B. CRI: Color rendering index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. Lumen: Measured output of lamp and luminaire, or both.
- F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of luminaire.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.
 - 3. Include physical description and dimensions of luminaire.
 - 4. Lamps, include life, output (lumens, CCT, and CRI), and energy-efficiency data.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

26 5619 - 1

LED EXTERIOR LIGHTING

- 5. Photometric data and adjustment factors based on laboratory tests, complying with IES Lighting Measurements Testing and Calculation Guides, of each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project IES LM-79 IES LM-80.
 - Manufacturer's Certified Data: Photometric data certified by manufacturer's a. laboratory with a current accreditation under the NVLAP for Energy Efficient Lighting Products.
 - Testing Agency Certified Data: For indicated luminaires, photometric data certified b. by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
- 6. Wiring diagrams for power, control, and signal wiring.
- 7. Photoelectric relays.
- Means of attaching luminaires to supports and indication that the attachment is suitable 8. for components involved.
- Β. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - Include details of luminaire assemblies. Indicate dimensions, weights, loads, required 2. clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
- C. Samples: For each luminaire and for each color and texture indicated with factory-applied finish.
- Product Schedule: For luminaires and lamps. Use same designations indicated on D. Drawings.
- E. Delegated-Design Submittal: For luminaire supports.
 - 1. Include design calculations for luminaire supports and seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

- Α. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Luminaires.
 - Structural members to which equipment and luminaires will be attached. 2.
 - Underground utilities and structures. 3.
 - Existing underground utilities and structures. 4.
 - Above-grade utilities and structures. 5.
 - Existing above-grade utilities and structures. 6.
 - Building features. 7.
 - Vertical and horizontal information. 8.
- Β. Qualification Data: For testing laboratory providing photometric data for luminaires.
- C. Seismic Qualification Data: For luminaires, accessories, and components, from manufacturer.
 - Basis for Certification: Indicate whether withstand certification is based on actual test of 1. assembled components or on calculation.

- 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- D. Product Certificates: For each type of the following:
 - 1. Luminaire.
 - 2. Photoelectric relay.
- E. Product Test Reports: For each luminaire, for tests performed by **a qualified testing agency**.
- F. Source quality-control reports.
- G. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires **and photoelectric relays** to include in operation and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers' codes.
 - 2. Provide a list of all photoelectric relay types used on Project; use manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: **Ten for every 100** of each type and rating installed. Furnish at least one of each type.
 - 2. Glass, Acrylic, and Plastic Lenses, Covers, and Other Optical Parts: **One for every 100** of each type and rating installed. Furnish at least one of each type.
 - 3. Diffusers and Lenses: **One for every 100** of each type and rating installed. Furnish at least one of each type.
 - 4. Globes and Guards: **One for every 20** of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturers' laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
- B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products and complying with applicable IES testing standards.
- C. Provide luminaires from a single manufacturer for each luminaire type.
- D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

- E. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.
- F. Mockups: For exterior luminaires, complete with power and control connections.
 - 1. Obtain Architect's approval of luminaires in mockups before starting installations.
 - 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed work.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering prior to shipping.

1.10 FIELD CONDITIONS

- A. Verify existing and proposed utility structures prior to the start of work associated with luminaire installation.
- B. Mark locations of exterior luminaires for approval by Architect prior to the start of luminaire installation.

1.11 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures, including luminaire support components.
 - b. Faulty operation of luminaires and accessories.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 - 2. Warranty Period: **5** year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

- A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to **ASCE/SEI 7**.
- B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.

26 5619 - 4

1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.
- C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
- D. UL Compliance: Comply with UL 1598 and listed for wet location.
- E. Lamp base complying with **ANSI C81.61 or IEC 60061-1**.
- F. Bulb shape complying with ANSI C79.1.
- G. CRI of **80**. CCT as specified on drawings.
- H. L70 lamp life of **50,000** hours.
- I. Lamps dimmable from 100 percent to 0 percent of maximum light output.
- J. Internal driver.
- K. Nominal Operating Voltage: **120 V ac** or **208 V ac**.
- L. Lamp Rating: Lamp marked for **outdoor use and in enclosed locations**.
- M. Source Limitations: Obtain luminaires from single source from a single manufacturer.
- N. Source Limitations: For luminaires, obtain each color, grade, finish, type, and variety of luminaire from single source with resources to provide products of consistent quality in appearance and physical properties.

2.3 LUMINAIRE-MOUNTED PHOTOELECTRIC RELAYS

- A. Comply with UL 773 or UL 773A.
- B. Contact Relays: Factory mounted, single throw, designed to fail in the on position, and factory set to turn light unit on at 1.5 to 3 fc and off at 4.5 to 10 fc with 15-second minimum time delay.
 - 1. Relay with locking-type receptacle shall comply with ANSI C136.10.
 - 2. Adjustable window slide for adjusting on-off set points.

2.4 MATERIALS

A. Metal Parts: Free of burrs and sharp corners and edges.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19 LED EXTERIOR LIGHTING

- Β. Sheet Metal Components: Corrosion-resistant aluminum. Form and support to prevent warping and sagging.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.
- D. Diffusers and Globes:
 - 1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 2. Glass: Annealed crystal glass unless otherwise indicated.
 - Lens Thickness: At least 0.125 inch minimum unless otherwise indicated. 3.
- E. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- F. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.
- G. Housings:
 - Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in 1. use.
 - Provide filter/breather for enclosed luminaires. 2
- Η. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp characteristics:
 - "USE ONLY" and include specific lamp type. a.
 - b. Lamp diameter, shape, size, wattage and coating.
 - C CCT and CRI for all luminaires.

2.5 **FINISHES**

- Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in Α. appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- Β. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.
- Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes C. Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

- 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
- 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20 requirements; and seal aluminum surfaces with clear, hard-coat wax.
- 3. Class I, Clear-Anodic Finish: AA-M32C22A41 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
- 4. Class I, Color-Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker), complying with AAMA 611.
 - a. Color: Verify with Architect.
- D. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
 - 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 - a. Color: As selected from manufacturer's standard catalog of colors.
 - b. Color: Match Architect's sample of **manufacturer's standard** or **custom** color.
 - c. Color: As selected by Architect from manufacturer's full range.

2.6 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 26 0529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for luminaire electrical conduit to verify actual locations of conduit connections before luminaire installation.
- C. Examine walls, roofs, **and canopy ceilings and overhang ceilings** for suitable conditions where luminaires will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is substantially complete, clean luminaires used for temporary lighting and install new lamps.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Comply with NECA 1.
- B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
- C. Install lamps in each luminaire.
- D. Fasten luminaire to structural support.
- E. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Support luminaires without causing deflection of finished surface.
 - 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.
- F. Wall-Mounted Luminaire Support:

1. Attached to structural members in walls.

- G. Wiring Method: Install cables in raceways. Conceal raceways and cables.
- H. Install luminaires level, plumb, and square with finished grade unless otherwise indicated. Install luminaires at height and aiming angle as indicated on Drawings.
- I. Coordinate layout and installation of luminaires with other construction.
- J. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.
- K. Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables" and Section 26 0533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.4 BOLLARD LUMINAIRE INSTALLATION:

- A. Align units for optimum directional alignment of light distribution.
 - 1. Install on concrete base with top **4 inches** above finished grade or surface at luminaire location. Cast conduit into base, and shape base to match shape of bollard base. Finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 03 3000 "Cast-in-Place Concrete."

26 5619 - 8

LED EXTERIOR LIGHTING

3.5 INSTALLATION OF INDIVIDUAL GROUND-MOUNTED LUMINAIRES

- A. Aim as indicated on Drawings.
- B. Install on concrete base with top **4 inches** above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 03 3000 "Cast-in-Place Concrete."

3.6 CORROSION PREVENTION

- A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
- B. Steel Conduits: Comply with Section 26 0533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch- thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.7 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL

- A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.
- B. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Verify operation of photoelectric controls.
- C. Illumination Tests:
 - 1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IES testing guide(s):
 - a. IES LM-5.
 - b. IES LM-50.
 - c. IES LM-52.
 - d. IES LM-64.
 - e. IES LM-72.
 - 2. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
- D. Luminaire will be considered defective if it does not pass tests and inspections.
- E. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

26 5619 - 9

3.9 DEMONSTRATION

A. **Train** Owner's maintenance personnel to adjust, operate, and maintain luminaires **and photocell relays**.

3.10 ADJUSTING

- A. Occupancy Adjustments: When requested within **12** months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to **two** visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.
 - 1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
 - 2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 - 3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION

26 5619 - 11

LED EXTERIOR LIGHTING

SECTION 27 5313

CLOCK SYSTEMS

TIPS:

To view non-printing Editor's Notes that provide guidance for editing, click on MasterWorks/Single-File Formatting/Toggle/Editor's Notes.

To read detailed research, technical information about products and materials, and coordination checklists, click on MasterWorks/Supporting Information.

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Master clock and program control unit.
 - 2. Secondary indicating clocks.
 - 3. Program signal devices.
 - 4. Clock circuit power boosters.
 - 5. System wire and cable.

1.3 DEFINITIONS

- A. NIST: The National Institute of Science and Technology.
- B. PC: Personal computer.
- C. UTC: Universal time coordinated. The precisely measured time at zero degrees longitude; a worldwide standard for time synchronization.

1.4 **PERFORMANCE REQUIREMENTS**

- A. Seismic Performance: Master clock and housing shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

27 5313 - 1

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes (including available colors) for each product indicated and describe features and operating sequences, both automatic and manual, for the following:
 - 1. Master unit.
 - 2. Indicating clocks.
 - 3. Signal equipment.
 - 4. Equipment enclosures and back boxes.
 - 5. Accessory components.
- B. Shop Drawings: For clock systems. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring and correction circuits.
 - a. Identify terminals and wiring color codes to facilitate installation, operation, and maintenance.
 - b. Indicate recommended wire types and sizes, and circuiting arrangements for fieldinstalled system wiring. Show protection from overcurrent, static discharge, and voltage surge.
 - 2. Details of seismic restraints including mounting, anchoring, and fastening devices for the following system components:
 - a. Surface-mounted and semi-recessed secondary indicating clocks.
 - b. Master clock enclosures and mounting racks.
 - c. Clock circuit power boosters.
 - 3. Details of seismic strengthening of master clock enclosures and mounting racks.
 - 4. Dimensioned Outline Drawings of the Mounting Rack for the Master Clock: Show internal seismic bracing, and locate center of gravity of fully equipped and assembled unit. Locate and describe mounting and anchorage provisions.
- C. Delegated-Design Submittal: For the master clock and housing indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of the master clock and housing.
 - 2. Design Calculations: Calculate requirements for selecting seismic restraints.

1.6 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For the master clock, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For clock and program control to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MASTER AND SECONDARY CLOCK SYSTEM

- A. Manufacturers
 - 1. American Time and Signal Co
 - 2. Dukane Communication Systems
 - 3. Faraday
 - 4. Lathem Time
 - 5. Midwest Time Control, Inc
 - 6. National Time and Signal Corporation
 - 7. Rauland-Borg Corporation
 - 8. Sapling, Inc.
 - 9. SimplexGrinnell LP
 - 10. Telecore Inc
- B. System Functions and Features:
 - 1. Supply power to remote indicating clocks.
 - 2. Maintain correct synchronized time and transmit time-correction signals over dedicated system wiring from a master clock to any two type(s) of secondary indicating clocks, including the following:
 - a. Analog Synchronous Clocks: Correct for minute- and second-hand synchronization at least once each hour and for hour-hand synchronization at least once each day.
 - b. Digital Clocks: Test clocks automatically for synchronization with master time control at least once every hour and automatically correct those not synchronized with the time reference unit. Automatically correct clocks immediately when power is restored after an outage of power to the master clock.
 - 3. Initiate and execute programs for scheduled automatic operation of remote devices. Include audible signal devices and visual signal devices and on and off switching of equipment and circuits.
 - 4. Provide for manual control of programmed signal and equipment-switching circuits.
 - 5. Communicate with remote PC for access to UTC time base and to permit programming from remote location.

- 6. Maintain system access security with a minimum of one level of user-access control to restrict use of system controls to authorized personnel. Levels of access apply to both local access and access from a remote computer. Access to user programming and control functions is accomplished by entering a minimum three-digit code. Access levels include the following:
 - a. Access to all user-programming and control functions.
- 7. Regulate system timing functions using power-line frequency, backed up for power outages by an internal battery-powered, crystal-controlled oscillator.
- 8. Regulate system timing functions using power-line frequency, backed up for power outages by an internal battery-powered, crystal-controlled oscillator, and automated periodic reference to NIST or UTC time signals via internal modem and network or microcomputer Internet access. Reference time signals shall be automatically accessed at programmable intervals.
- 9. Provide for programming multiple independent event schedules into memory and running them simultaneously for different output circuits.
 - a. Quantity of Programmable Schedules: As required by the Owner.
 - b. Number of Weekly Events That Can Be Programmed for Each Schedule: As required by the owner.
 - c. Simultaneous operation of independent schedules shall be limited only by the number of signal-device and equipment-switching output circuits.
 - d. Advance Programming for Automatic Holiday Schedule Changes: Number of schedule changes that can be programmed to suit holidays and vacations shall be as required by the owner, and each change may be programmed up to a year in advance to occur on any day of the calendar year.
- 10. Automatically check functioning of LEDs, switches, input keys, central processor, readonly memory, random access memory, and output circuits. A display on the control panel or a remote computer with the proper access code shall indicate failure by identifying faulty component or circuit and shall recommend corrective action.
- 11. Provide programming for automatic daylight savings time correction.
- 12. Provide for adjustments to master clock output signals. Duration of momentary signal shall be individually programmable for each signal and equipment-control output circuit from 1 to 99 seconds. Signals shall be programmable for either on or off switching to suit equipment-operation scheduling.

2.2 MASTER CLOCK

- A. Description: Microprocessor-based, software-controlled unit complying with Class A device requirements in 47 CFR 15.
 - 1. Programming and control switches.
 - 2. Informational Display: LED or backlit LCD type.
 - a. Normally shows current time, date, and day of week display.
 - b. Provides programming cues when system is being programmed.
 - 3. Output Circuits for Power and Correction of Secondary Indicating Clocks:
 - a. Wired Synchronous Clock Power-and-Correction Circuits: For analog and digital clocks; a minimum of one required. Relay controlled.
 - b. Wired Synchronous Digital Clock Power-and-Correction Circuits: One required.

27 5313 - 4

- 4. Data Output Port for[Digital] Secondary Clock Correction Circuit: RS485 or similar circuit for scheduled periodic correction signals.
- 5. Modem and PC interface software suitable for remote programming.
- 6. Circuits for Audible and Visual Signal Devices: Relay controlled, manually switchable, using controls on the master clock. Rated 120-V ac, 10 A minimum. Number of circuits as required.
- 7. Circuits for Programmable Switching of Remote Equipment and Circuits: Relay controlled, manually switchable, using controls on the master clock. Rated 120-V ac, 10 A minimum. Number of circuits as required..
- 8. Power Supplies: Capacity for internal loads and power-and correction circuits of connected clocks.
- 9. Enclosure: Metal cabinet with locking front panel. When cabinet is locked, display indication shall be visible on or through front panel face. Arrange cabinet for surface, semirecessed, or flush mounting as indicated.
- 10. Housing: Rack-mounting metal enclosure with display indication visible on front panel face.
 - a. Reinforce mounting and attachment capable of resisting seismic forces described in Section 26 0548.16 "Seismic Controls for Electrical Systems."
- 11. Battery Backup for Time Base: Lithium battery to maintain the timekeeping function and retain the programs in memory during outage of normal ac power supply for up to 10 years.

2.3 SECONDARY INDICATING CLOCKS

- A. Analog Clock: Equipped with a sweep second hand. Movement shall be driven by self-starting, permanently lubricated, sealed synchronous motor equipped with a correcting solenoid actuator, or be a microprocessor-based, second impulse unit, compatible with the master clock.
- B. Digital Clock: Microprocessor-controlled unit complying with Class A device requirements in 47 CFR 15, with red LED digital time display of hours, minutes, and seconds.
 - 1. Display Height: 2-1/2-Inch (64-mm) Clock: Hour and minute numerals readable at 50 feet (15 m).
 - 2. Display Height: 4-Inch (102-mm) Clock: Hour and minute numerals readable at 100 feet (30 m).
 - 3. Display Format: Selectable between 12-hour with "PM" LED display and 24-hour formats.
 - 4. Connections for Power and Correction:
 - a. Wired synchronous connection to the master clock for both operating power and correction.
 - 1) Time-Base Backup: Internal alkaline battery shall back up internal time base to maintain timekeeping during power outages of up to six days' duration.
 - 2) Time-Base Backup: Internal capacitor shall back up internal time base to maintain timekeeping during power outages of up to 12 hours' duration.
 - b. Correction by RS485, Ethernet, or similar data line with operating power supplied over a separate connection.
 - c. Power Connection for Secondary Indicating Clocks: Plug connector.

27 5313 - 5

- C. Interval-Timer Clock: Digital microprocessor-controlled, 4-inch (102-mm) unit with 2-1/2-inch (64-mm), red LED digital display for hours and minutes and 1-5/16-inch (33-mm) display for seconds; a separately mounted, mode-control switch; and the following features:
 - 1. Display Visibility: Hour and minute numerals readable at [30 feet (10 m)] in normal ambient light.
 - 2. Operating Modes:
 - a. Normal: Clock operates as a regular secondary system clock, displaying corrected time in normal display configuration, selectable between 12- and 24-hour formats, with "PM" digital display for 12-hour format.
 - b. Count-Down or Count-Up Timer: Selected by mode-control switch count-up and count-down positions, and capable of being preset at the mode-control station.
 - c. Code Blue: Automatically selected by a signal through a wiring connection from the code-blue system. This signal captures control of the clock regardless of current mode or correction status and instantly initiates count-up operation, starting at time 00:00:00. While in this mode, other clock functions, including correction, shall run in the background. Clock shall revert to normal operating mode when the initiating-signal system is reset.
 - 3. Mode-Selector Switch: Push-button or rotary, multiposition type, flush mounted; with start, stop, and reset capability in both count-up and count-down modes.
 - 4. Audible tone signal: Housed in clock or mode-selector-switch box. Sounds at end of preset up or down count.
- D. Provision for Modular Panel Installation: Equip designated clock for panel mounting. Mount flush or semirecessed with arrangement and trim as indicated. Coordinate wiring with other modular panel components, including room lighting switches, intercom devices, convenience outlets, data outlets, speaker and other similar devices.

2.4 PROGRAM SIGNAL DEVICES

- A. Bells: Heavy-duty, modular, vibrating type with the following sound-output ratings measured at 10 feet (3 m):
 - 1. 4-Inch (100-mm) Bell: 90 dB.
 - 2. 6-Inch (150-mm) Bell: 95 dB.
 - 3. 10-Inch (250-mm) Bell: 104 dB.
- B. Chimes: Heavy-duty, modular, vibrating chimes with polished-chrome tone bar and enamelfinished housing. Minimum sound-output rating measured at 10 feet (3 m) shall be 75 dB.
- C. Clock Buzzers: Adjustable output signal device designed for mounting within clock housing or outlet box.
 - 1. Sound-Output Rating Measured at 3 Feet (1 m): 75 dB.
 - 2. Audible Tone Frequency: Manufacturer's standard between 120 Hz and 2 kHz.
- D. Horns: Modular, adjustable-output, vibrating type with minimum full-intensity-rated sound output of 103 dB measured at 10 feet (3 m).
- E. Projector Horns: Adjustable-output, vibrating type with single projector arranged to channel sound in the direction of the projector axis, and with minimum full-intensity-rated sound output of 104 dB measured at 10 feet (3 m).

- F. Loudspeakers for Audible Tones: See Section 27 5116 "Public Address and Mass Notification Systems."
- G. Visible Signal Devices: Strobe lights with blue or yellow polycarbonate lens and xenon flash tube, with lens mounted on an aluminum faceplate and the word "Program" engraved in letters at least 1 inch (25 mm) high on lens. Lamp unit shall have a minimum rated light output of 75 candela.
- H. Combination Audible and Visible Signal Devices: Factory-integrated horn and strobe light in a single mounting assembly.
- I. Outdoor Signal Equipment: Weatherproof models listed for outdoor use.
- J. Mounting Arrangement for Signal Devices: Designed for attachment with screws on the mounting plate of a flush-mounted back box unless otherwise indicated.
- K. Enclosures for Flush-Mounting Bells and Horns: Enclosure, mounting plate, and grille assembly shall be furnished by device manufacturer to match features of the device to be mounted. Enclosure shall be recessed in wall, completely enclosing the device, with grille mounting over the open side of the enclosure and flush with the wall.
- L. Connection Provision for Signal-Indicating Devices: Plug connector, or Wire pigtail or compression splice.

2.5 CLOCK CIRCUIT POWER BOOSTER

A. Description: Transformer power supply, mounted in steel cabinet with hinged door, and having fuse-protected input and output circuits.

2.6 BACK BOXES FOR SECONDARY INDICATING CLOCKS AND PROGRAM DEVICES

A. Description: Box and cover-plate assembly shall be furnished by device manufacturer and be suitable for device to be mounted. Back boxes shall be equipped with knockouts and hanger straps or mounting adapters arranged for flush mounting the device unless otherwise indicated.

2.7 GUARDS

- A. Description: Formed-steel wire, shaped to fit around guarded device, with 1-inch (25-mm) maximum clearance.
 - 1. Mounting Provisions: Fixed tabs, welded to guard and arranged for screw attachment to mounting surface.
 - 2. Finish for Indoor Devices: Clear epoxy lacquer over zinc plating.
 - 3. Finish for Outdoor Devices: Black powder coat over zinc plating and primer.

2.8 RACK-MOUNTING PROVISION FOR MASTER CLOCK

- A. Equipment Cabinet: Wall-mounted, rack type. Comply with EIA-310-D and the following:
 - 1. Cabinet Housing: Constructed of steel, with front doors; with manufacturer's standard tumbler locks, keyed alike.

- a. Front door shall have a clear panel in front of the master clock display.
- b. Housing shall enclose master clock and auxiliary clock system components, plus a minimum of 20 percent spare capacity for future equipment.
- 2. Forced Ventilation: Internal low-noise fan with a filtered intake vent, connected to operate from 105- to 130-V ac, 60 Hz; separately fused and switchable and arranged to be powered when main cabinet power switch is on.
- 3. Natural Ventilation: Ventilated rear and sides with louvers and solid top.
- 4. Arrange inputs, outputs, interconnections, and test points so they are accessible at rear of rack for maintenance and testing, with each item removable from rack without disturbing other items or connections.
- 5. Blank Panels: Cover empty space in equipment racks so entire front of rack is occupied by equipment or panels.
- 6. Finish: Uniform, baked-enamel, manufacturer's standard color finish over rust-inhibiting primer.
- 7. Power-Control Panel: On front of equipment housing; with master power on-off switch and pilot light, and socket for a 5-A, indicating, cartridge fuse for rack equipment power.
- 8. Vertical Plug Strip: Grounded receptacles, 12 inches (300 mm) o.c. the full height of rack, to supply rack-mounting equipment.
- 9. Maintenance Receptacles: Duplex convenience outlet with supply terminals separate from equipment plug strip and located in front of rack.

2.9 CONDUCTORS AND CABLES

- A. Conductors: Jacketed, twisted pair and twisted multipair, untinned solid copper. Sizes as recommended by system manufacturer, but not smaller than No. 22 AWG. Voltage drop for signal, control, and clock correction circuits shall not exceed 10 percent under peak load conditions. Comply with requirements in Section 27 1500 "Communications Horizontal Cabling."
- B. 120-V AC and Class 1 Signal and Control Circuits: Stranded, single conductors of size and type recommended by system manufacturer. Materials and installation requirements are specified in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 2 and Class 3 Signal and Control Circuits: Single conductor or twisted-pair cable, unshielded, unless manufacturer recommends shielded cable.
- D. Data Circuits: Category 6 minimum, unshielded, twisted-pair cable, unless manufacturer recommends shielded cable.
- E. Insulation: Thermoplastic, not less than 1/32 inch (0.8 mm) thick.
- F. Plenum Cable: Listed and labeled for plenum installation.
- G. Conductor Color-Coding: Uniformly identified and coordinated with wiring diagrams.
- H. Shielding: For speaker-microphone leads and at other locations recommended by manufacturer; No. 34 AWG tinned, soft-copper strands formed into a braid or equivalent foil.
 - 1. Minimum Shielding Coverage on Conductors: 60 percent.

2.10 PATHWAYS

- A. Intercommunication and Program System Raceways and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems."
- B. Intercommunication and Program System Raceways and Boxes: Same as required for electrical branch circuits specified in Division 26 Section "Raceway and Boxes for Electrical Systems."
- C. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.
- D. Flexible metal conduit is prohibited.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Mount system components with fastening methods and devices designed to resist the seismic forces indicated in Section 26 0548.16 "Seismic Controls for Electrical Systems."

3.2 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Comply with requirements for raceways and boxes specified in Section 26 0533 "Raceway and Boxes for Electrical Systems."
- B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures: Bundle, lace, and train cables to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.
- D. Support cables not enclosed in raceways on J-Hooks. Install, size, and space J-Hooks to comply with TIA/EIA-568-B.

3.3 ELECTRICAL CONNECTIONS

- A. Make splices, taps, and terminations on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.
- B. Use plug connectors for connections to clocks and signal devices.
- C. Ground clocks, programming equipment, and conductor and cable shields to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

3.4 IDENTIFICATION

- A. Comply with Section 26 0553 "Identification for Electrical Systems."
- B. Color-code wires, and apply wire and cable marking tape to designate wires and cables so they are uniformly identified and coordinated with wiring diagrams throughout the system.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installation, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Perform operational-system tests to verify compliance with the Specifications and make adjustments to bring system into compliance. Include operation of all modes of clock correction and all programming and manually programmed signal and relay operating functions.
 - 2. Verify that units and controls are properly labeled and interconnecting wires and terminals are identified.
- D. Clock system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Program system according to Owner's requirements. Set system so signal devices operate on Owner-required schedules and are activated for durations selected by Owner. Program equipment-control output circuits to suit Owner's operating schedule for equipment controlled.
- B. Adjust sound-output level of adjustable signal devices to suit Owner's requirements.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain clock-and-programcontrol system components.

END OF SECTION

Cherokee Nation Information Technology

Network Construction Standards and Requirements

INTRODUCTION

The following Network Construction Standards and Requirements pertain to the requirements of the Cherokee Nation Information Technology Network Section. All preceding documentation is superseded by this document and shall be used until replaced.

This is our requirements that we require to be followed when designing, constructing, or refurbishing any building that requires a network to be installed or upgraded. If there are any questions please contact Cherokee Nation Information Technology Network Group.

PART 1 – GENERAL

- 1) SECTION REQUIREMENTS
 - a) Summary: Furnish and install complete with all accessories a Structured Cabling System (SCS). The SCS shall serve as a vehicle for transport of data, video and voice telephony signals throughout the network from designated demarcation points to outlets located at various desks, workstation and other locations as indicated on the contract drawings and described herein.
 - b) Submittals
 - i) Product Data
 - (1) Owner is providing a list of standard parts required for the contract. Any additional parts used the vendor/contractor will provide manufacture's catalog information showing dimensions, colors and configurations.
 - (2) Submittals shall include all items called for in PART 2 PRODUCTS of this document and the manufacturers cut sheets for the following:
 - (a) All balanced twisted pair cable.
 - (b) All connectors and required tooling.
 - (c) All termination system components for each cable type.
 - (d) All test equipment to be used for balanced twisted pair channels.
 - (3) A Performance Specification showing manufacturer's Guaranteed Published Channel Performance over the full swept frequency range.
 - (4) Technical data sheets shall include the physical specifications as well as the following electrical and transmission characteristics for balanced twisted pair channels:
 - (a) Mutual Capacitance
 - (b) Characteristic Impedance
 - (c) DC Resistance
 - (d) Insertion Loss (IL)
 - (e) Pair-to-Pair Near End Crosstalk (NEXT)
 - (f) Power Sum Near End Crosstalk (PSNEXT)
 - (g) ELFEXT (ELFEXT)
 - (h) Power Sum ELFEXT (PSELFEXT)
 - (i) Return Loss (RL)
 - (j) Propagation delay
 - (k) Delay Skew
 - ii) Samples

(1) Prior to installation, samples of cable and components shall be provided to the Owner, its

Consultants and Construction Manager for evaluation prior to Installation

- (a) Submit samples of each type of cable
 - (i) Three (3) 24" long samples of each type of cable, copper (6e & 6a) and fiber (SM & MM). For the copper, the sample cannot be from the same box/reel. Must take from three separate boxes/reels.
 - (ii) Three (3) samples of each connector.
 - (iii)One each 100ft terminated copper of the 6e & 6a cable in a bag for test reference and permanent storage in the Main Closet. Each should start at the lowest footage mark.
- iii) Manufacturer's Instructions
 - (1) Indicate application conditions and limitations of use stipulated by product testing agency specified under regulatory requirements.
 - (2) Include instructions for storage, handling, protection, examination, preparation, operation and installation of product.
- iv) Material Guarantee
 - (1) The wiring vendor/contractor (installer) shall guarantee at the time of the bid that all Category 6A and 6E cabling and components meet or exceed specifications (including installation) as referenced in 1.2.
 - (2) The successful wiring vendor/contractor (installer) will insure that all correct parts are ordered per Products Section of this document and installed in accordance with manufacturers design and installation guidelines. Vendor/contractor shall submit complete parts and part numbers to the Construction Manager prior to installation of equipment.
 - (3) Test Fiber optic cables upon receipt at Project site:
 - (a) Test optical fiber cable to determine the continuity of the strand end to end. Use optical loss test set.
 - (b) Test optical fiber cable while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector, including the loss value of each. Retain test data and include the record in final documentation.
- v) Quality Assurance
 - (1) For Cat 6a and 6e copper and Fiber optic the following will be provided:
 - (a) System:
 - (i) The successful Bidder shall warrant that all materials and equipment furnished within the channel, under the contract are new, in good working order, free from defects, and in conformance with the Structured Cabling SYSTEM specifications. All installed equipment must conform to the manufacturer's official published specifications. The warranty shall begin at the Structured Cabling System acceptance date and remain in effect for a period of twenty-five year from that date. The successful Bidder shall agree to repair, adjust, and/or replace (as determined by the Purchaser to be in its best interest) any defective equipment, materials, or other parts of the Structured Cabling System at the successful Bidder's sole cost. The Purchaser will incur no costs for service or replacement of parts within the channel during the warranty period of 25 years.
 - (ii) Selected vendor must provide a Structured Cabling System warranty for a minimum of 25 years. The Structured Cabling System warranty must guarantee the electrical performance to meet or exceed the requirements as outlined in documents TIA/EIA 568A and ISO DIS 11801 and offer a twenty five (25) year warranty within the Structured Cabling SYSTEM Channel, beginning at acceptance by the Purchaser. The warranty must include complete parts and labor replacement of defective products. The products must be warranted for a minimum of 20 years by the manufacturer. The Structured Cabling System warranty must have provisions for replacing the contracting

organization at no cost to the customer should the contractor lose his status as an authorized installer or otherwise not fulfill his obligation to the customer as outlined in the Structured Cabling System warranty program.

- (iii) The successful Bidder shall warrant and supply evidence that the installation of materials and hardware will be made in strict compliance with all applicable provisions of the National Electric Code, the rules and regulations of the Federal Communications Commission, and state and/or local codes or ordinances that may apply.
- (b) Application:
 - (i) Minimum twenty (20) year application assurance: The application assurance shall cover the failure of the wiring system to support the application which it was designed to support, as well as additional application(s) introduced in the future for a minimum twenty (20) year period.
- vi) Certifications
 - (1) The successful vendor/contractor shall meet the current year Panduit Business Partner Agreement – Panduit Certified Installer (and/or Addendum), and shall provide a copy of the PCI certificate before awarding contract.
 - (2) A copy of certification not less than 6 months from expiration for the vendors/installer Panduit Certified Copper and Fiber Technicians (PCT) shall be submitted upon awarding of contract before first cable is pulled and or installed.
 - (3) If the successful vendor/contractor subcontracts the job (and so on), then each awarded vendor/installer shall comply with the same certifications as above.

2) STANDARDS AND CODE COMPLIANCE REFERENCES

- a) The following industry standards are the basis for the structured cabling system described in this document:
 - i) TIA/EIA
 - (1) ANSI/TIA-568-C.0, Generic Telecommunications Cabling for Customer Premises, February 2009
 - (2) ANSI/TIA-568-C.1, Commercial Building Telecommunications Cabling Standard, February 2009
 - (3) ANSI/TIA-568-C.2, Balanced Twisted-Pair Telecommunications Cabling and Components
 - (4) Standards, August 2009
 - (5) ANSI/TIA-568-C.3, Optical Fiber Cabling Components Standard, June 2008.
 - (6) TIA/EIA569A Commercial Building Standard for Telecom Pathways and Spaces
 - (7) TIA/EIA606 Administration Standard for the Telecommunications Infrastructure of Commercial Buildings
 - (8) TIA/EIA607 Commercial Building Grounding/Bonding Requirements
 - (9) TIA/EIA942 Telecommunications Infrastructure Standard for Data Centers
 - (10) IEEE Std 802.3(tm)-2008 Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications.
 - (1) IEEE Std 802.3(tm)-2008 Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications. IEEE 802.3bc-2009, Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications. Amendment 2: Ethernet Organizationally Specific Type, Length, Value (TLVs).
 - ii) NFPA70 National Electric Code (NEC) 2005
 - iii) ISO/IEC ISO/IEC 11801 Generic Cabling for Customer Premises
 - iv) BICSI ITSIM, Chapter. 4, "Pulling Cable."

3) ADDITIONAL SUPPPORT

- a) Cherokee Nation Information Technology Network Construction Standards and Requirements this document.
- b) Notes, drawings and instructions from Owner as needed.
- c) Panduit Certification PLUSSM System Warranty Program, Panduit Warranty Guide.
- d) Successful vendor/contractor is invited to review an existing network to see how Owner would like to see how the network should look upon completion.
- 4) The most recent versions of all documents apply to this project. If there is a conflict between applicable documents, the order above (section 2 and 3) shall dictate the order of precedence in resolving the issue unless an enforceable local or national code is in effect.

PART 2 – PRODUCTS

- 1) SYSTEM REQUIREMEMNTS
 - a) Expansion Capability: Provide spare conductor pairs in telecommunication cables, positions in crossconnect and patch panels, terminal strips to accommodate 20 percent future increase in the number of workstations shown on Drawings. All components and cabling shall be capable of 10G Bandwidth speed throughout the entire system.

2) CABLE TRAY

- a) Installation:
 - i) Cable tray will be the Chatsworth part no. 10250-718, {Standard length is 9'11-1/2"}. Cable Tray shall be installed with side stringers facing up so that the ladder forms a U-shape.
 - ii) Cable Tray shall be secured to the structural ceiling, building truss system, wall, floor or the tops of equipment racks and/or cabinets using the manufacturer's recommended supports and appropriate installation hardware and methods as defined by local code or the authority having jurisdiction (AHJ). Cable Tray shall be supported every 5' or less in accordance with TIA-569-B. Cable Tray shall be supported within 2' of every splice and within 2' on both/all sides of every intersection. Support Cable Tray within 2' on both sides of every change in elevation. Cable tray support will use the Threaded Ceiling kit (11310-003) or a combination of Runway Support Bracket (11408-003) with 5/8 All-Thread Rod on the outside, Ceiling Support Bracket (11406- 002), Threaded Rod I-Beam Clamps (10557-003), or appropriate hex nuts, split lock washers and plain washers through the bottom chord of the joists. Cable Tray splices will be made in mid-span, not over a support, with the manufacturer's recommended splice hardware.
 - iii) Cable Tray shall be installed with a minimum clearance of 12" above the Cable Tray. Leave a minimum of 12" in between Cable Tray and ceiling/building truss structure. When located above an acoustical drop ceiling, leave a minimum of 3" clearance between the top of the drop ceiling tiles and the bottom of the Cable Tray.
 - iv) Connections between tray sections shall be with the Butt-Splice kit (11301-001). If a redirection of up or down is required to go over or under utilities, use the Butt Swivel Splice kit (1 0487 -001). For the up or down movement of tray do not exceed more than 30 degrees so the cable will lie on the tray. The use of cut up tray sections/pieces on joints shall not be used. Manufacture parts shall be used.
 - v) Intersections (T or X shaped) shall be made using the Junction Splice Kit (11308-001), with Cable Runway Corner Bracket (11595-715) added to create a radius for the cable to lay on when making turns. For an L-turn use the Cable Runway E-Bend (10822-709).
 - vi) The cable tray is offset the length of the room to accommodate the rack, for all the cable to come off the track within 4 feet of the left hand wall when standing in the doorway.

- vii) Cover the exposed ends of cable runway that do not terminate against a wall or the ceiling with Protective End Caps (10643-001) or an End Closing Kit (11700-709).
- viii) The installer will provide touch-up paint color-matched to the finish on the Cable Tray and will correct any minor cosmetic damage (chips, small scratches, etc.) resulting from normal handling during the installation process prior to delivery to the owner. If a component is cosmetically damaged to the extent that correction in the field is obvious against the factory finish, the component will be replaced with a new component finished from the factory. If a component is physically damaged due to mishandling or modification during the installation process, it shall not be used as part of the Cable Tray system. Paint listed in parts list.
- b) Grounding
 - i) Grounding will be in accordance with the Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications J-STD-607 -A. Within the telecommunications room/s and throughout the building, the Cable Tray shall be bonded together, electrically continuous, and bonded to the TGB. Cable Tray and turns shall be bonded across each splice with a bonding kit (40164-001 or 025). Cable Tray shall be bonded to the Telecommunications Grounding Buss bar (TGB) using an approved ground lug on the Cable Tray and a minimum #6 grounding wire. Remove paint from the Cable Tray where bonding/ground lugs contact the Cable Tray so that the lug will contact bare metal. Use antioxidant joint compound in between the bare metal on the Cable Tray and ground lug. Use antioxidant joint compound in between the bus bar and the ground lug. Verify continuity through the bonds at splices and intersections between individual Cable Tray sections and turns and through the bond to the TGB.
 - ii) The use of cut up tray sections/pieces on joints shall not be used as a grounding bond between the joints.

3) IT ROOM

- a) Server room shall be Air Conditioned with a separate unit on a separate thermostat.
- b) The HVAC shall be provided on a 24 hours-per-day, 365 days-per year basis. If a standby power source is available in the building, consideration should be given to connecting the HVAC system serving the telecommunications equipment room to the standby supply.
- c) The temperature and humidity shall be controlled to provide continuous operating ranges of 18deg C (64deg F) to 24 "C (75deg F) with 30% to 55% relative humidity. Humidification and dehumidification equipment may be required depending upon local environmental conditions
- d) A positive air pressure differential with respect to surrounding areas should be provided.
- e) Need 120v power receptacles on all walls with dedicated circuits. The rack vertical management will have twist lock and quad receptacles as request by the owner and Drawings.
- f) Wall 3/4" void free A-C grade (or better) plywood with 2 coats of fire retardant paint.
- g) Equipment not related to the support of the equipment room (e.g., piping, ductwork, pneumatic tubing, etc.) shall not be installed in; pass through, or enter the equipment room.

4) MOUNTING ELEMENTS

a) Use the following charts to reference which equipment will be used.

Chart			
Line item	P/N	Description	Qty
1	4220W	Dell 42U enclosure, wide (4220W): 750mm wide x 1070mm deep	
2	PRV15	Panduit Vertical Cable manager	
3	CMR4P84	Panduit 4-Post rack	
4	PRD15	Panduit Dual hinged door	

Chart 1

5	PREP	Panduit End Panel	
6	RGRB19U	Panduit ground bar	
7	GB2B0312TPI-1	Panduit Telecommunications ground bar	
8	10250-724	Chatsworth Universal cable runway, Black – 24 Inch Wide	Reference
9	11301-702	Chatsworth Butt Splice Kit, 2" Stringer, Black	Reference
10	10724-724	Chatsworth Cable runway radius bend – 24inch Wide	Reference
11	11309-701	Chatsworth Foot kit, cable runway	Reference
12	11421-724	Chatsworth Wall angle support kit, cable runway – 24inch Wide	Reference
13	31470-712	Chatsworth Cable runway standoff support kit	Reference
14	10506-702	Chatsworth Cable runway elevation kit	Reference
15	11302-701	Chatsworth Junction-splice kit	Reference
16	10723-724	Chatsworth Cable runway radius bend	Reference
17	11959-724	Chatsworth Corner Bracket 24 inch Radius,	Reference
18	11746-724	Chatsworth Triangular Supports Bracket, steel	Reference

Chart 2

Line					
Line item	Qty	P/N	Description	Purpose	Notes
1		CJ6X88TGBU	Panduit Category 6A, RJ45, 10 Gb/s, 8-position, 8-wire universal module, Blue	Closet A Zone	
2		CJ6X88TGOR	Panduit Category 6A, RJ45, 10 Gb/s, 8-position, 8-wire universal module, Orange	Closet B Zone	
3		CJ6X88TGGR	Panduit Category 6A, RJ45, 10 Gb/s, 8-position, 8-wire universal module, Green	Closet C Zone	
4		CJ6X88TGRD	Panduit Category 6A, RJ45, 10 Gb/s, 8-position, 8-wire universal module, Red	Closet D Zone	
5		CJ6X88TGIW	Panduit Category 6A, RJ45, 10 Gb/s, 8-position, 8-wire universal module, Off White	Closet E Zone	
6		CJ688TGYL	Panduit Category 6, RJ45, 8-position, 8-wire universal module, Yellow	Camera Systems	
7		CJ688TGVL	Panduit Category 6, RJ45, 8-position, 8-wire universal module, Violet	Multimedia	
8		CJ6X88TGBU-24	Panduit Category 6A, RJ45, 10 Gb/s, 8-position, 8-wire universal module, Blue (24-Pk)	Closet A Zone	
9		CJ6X88TGOR-24	Panduit Category 6A, RJ45, 10 Gb/s, 8-position, 8-wire universal module, Orange (24-Pk)	Closet B Zone	
10		CJ6X88TGGR-24	Panduit Category 6A, RJ45, 10 Gb/s, 8-position, 8-wire universal module, Green (24-Pk)	Closet C Zone	
10		CJ6X88TGRD-24	Panduit Category 6A, RJ45, 10 Gb/s, 8-position, 8-wire universal module, Citeri (24-1k) Panduit Category 6A, RJ45, 10 Gb/s, 8-position, 8-wire universal module, Red (24-Pk)	Closet D Zone	
				Closet E Zone	
12		CJ6X88TGIG-24	Panduit Category 6A, RJ45, 10 Gb/s, 8-position, 8-wire universal module, Int Gray (24-Pk)		
13		CJ688TGYL-24	Panduit Category 6, RJ45, 8-position, 8-wire universal module, Yellow (24-Pk)	Camera Systems	
14		CJ688TGVL-24 PUR6004BU-UY	Panduit Category 6, RJ45, 8-position, 8-wire universal module, Violet (24-Pk)	Multimedia	
15			Panduit TX6000 Cat6 UTP riser copper cable	Camera Systems and Multimedia	
16	50	UTP6A7BU	Cat 6a 10Gb UTP patch cable, 7ft, Blue	Closet A network room connection	
17	70	UTP6A14BU	Cat 6a 10Gb UTP patch cable, 14ft, Blue	Closet A network room connection	
18	70	UTP6A20BU	Cat 6a 10Gb UTP patch cable, 7ft, Blue	Closet A network room connection	
19	70	UTP6A7OR	Cat 6a 10Gb UTP patch cable, 7ft, Orange	Closet B network room connection	
20	50	UTP6A7GR	Cat 6a 10Gb UTP patch cable, 7ft, Green	Closet C network room connection	
21	50	UTP6A7RD	Cat 6a 10Gb UTP patch cable, 7ft, Red	Closet D network room connection	
22	30	UTP6A7	Cat 6a 10Gb UTP patch cable, 7ft, Off White.	Closet E network room connection	
23	120	UTP6A5YL	Cat 6a 10Gb UTP patch cable, 5ft, Yellow	Security Cameras	
24	10	UTP6A3YL	Cat 6a 10Gb UTP patch cable, 3ft, Yellow	Security Cameras lamp posts	
25	30	UTP6A3VL	Cat 6a 10Gb UTP patch cable, 3ft, Violet	Multimedia	
26		Vendor specific	Panduit Mini-Com Snap -On Modular furniture faceplates	Modular Furniture	Check Panduit's catalog. Must have a label. Vendor s
27		CBIW	Panduit Single gang faceplate frame accepts two 1/2 size module inserts or three 1/3 size module inserts.	Multimedia plates	For other colors replace suffix IW (Off White) with E
28		CHS2IW-X	Panduit Two module space, 1/2 size, sloped insert accepts two Mini-Com modules	Multimedia plates	For other colors replace suffix IW (Off White) with E
29		CHB2IW-X	Panduit 1/2 Blank Insert	Multimedia plates	For other colors replace suffix IW (Off White) with E
30		KWPY	Panduit Stainless steel phone plate	Wall phones	The cable is terminated and left in the wall box.
31		CFPL2IWY	Single gang, vertical faceplate accepts two Mini-Com modules	Network wall plates	For other colors replace suffix IW (Off White) with E
32		CFPL3IWY	Single gang, vertical faceplate accepts three Mini-Com modules	Network wall plates	For other colors replace suffix IW (Off White) with E
33		CFPL4IWY	Single gang, vertical faceplate accepts four Mini-Com modules	Network wall plates	For other colors replace suffix IW (Off White) with E
31		CMBIW-X	Mini-Com blank module	Network wall plates	For other colors replace suffix IW (Off White) with E
32		TTS-35RX0	Panduit Tak-Tape (10 PK)	All network binding	
33		FOOPRX24Y	Panduit Opti-Core 24-Fiber indoor interlocking armored cable	All Back bone	
34		EZDP44	Fire Barrier CBL Pathway Single EZ Path W/WPLT Series 44		
35		RGESD2-1	Panduit Two-hole ESD port with 5/8" hole spacing		
36		11310-003	Chatsworth Threaded Ceiling Kit, Cable Runway		

specific faceplate.	
EI (Electric Ivory), WH (White), IG (Int Gray) or BL (Black)	
EI (Electric Ivory), WH (White), IG (Int Gray) or BL (Black)	
EI (Electric Ivory), WH (White), IG (Int Gray) or BL (Black)	
EI (Electric Ivory), WH (White), IG (Int Gray) or BL (Black)	
EI (Electric Ivory), WH (White), IG (Int Gray) or BL (Black) EI (Electric Ivory), WH (White), IG (Int Gray) or BL (Black)	
El (Electric Ivory), WH (White), IG (Int Gray) of BL (Black) El (Electric Ivory), WH (White), IG (Int Gray) or BL (Black)	

	11421-712	Chatsworth Wall Angle Support Kit, Cable Runway	
37			
38	10250-712	Chatsworth Universal Cable Runway – 12 inch wide	
39	10723-712	Chatsworth Cable Runway Radius Bend 90-Degree Outside Bend – 12 inch Wide	
40	10724-712	Chatsworth Cable Runway Radius Bend 90-Degree Inside Bend – 12 inch Wide	
41	11301-702	Chatsworth Butt-Splice Kit	
42	11298-701	Chatsworth Heavy Duty Junction-Splice Kit	
43	10642-001	Chatsworth Chatsworth Protective End Caps For Runway	
44	10622-010	Chatsworth Standard Busbar 4"Wx1/4"HxlO"L	
45	40164-001	Chatsworth #6AWG Ground Strap	
46	10250-718	Chatsworth Universal Cable Runway	
47	10723-718	Chatsworth Cable Runway Radius Bend 90 degree Outside Bend	
48	10724-718	Chatsworth Cable Runway Radius Bend 90 degree Inside Bend	
49	11421-718	Chatsworth Wall Angle Support Kit, Cable Runway	
50	11304-000	Chatsworth J-bolt Kit	
51	11301-001	Chatsworth Butt-Splice Kit	
52	10506-706	Chatsworth Cable Runway Elevation Kit 6"	
53	1201-701	Chatsworth Cable Runway Radius Drop Stringer	
54	12100-718	Chatsworth Cable Runway Radius Drop Cross Member	
55	JMDWB-1-X	Panduit Drop Wire brackets for J-hooks	
56	JMJH2-X20	Panduit J Hook	
57	FOPRX24Y	Panduit Opti-Core 24-Fiber 10gig indoor interlocking armored cable	
58	RGTBSG-C	Panduit Green thread-forming bonding screw, #12-24 x ¹ / ₂ ' (pkg 100)	

1
-
-
-
_

5) UNSHIELDED TWISTED-PAIR CABLING

- a) Backbone Fiber Cable:
 - i) Panduit Opti-Core 24-Fiber 10gig indoor interlocking armored cable, p/n FOPRX24Y
 - ii) Comply with TIA/EIA 568-B.1 & 3, and 598-B
 - iii) NFPA 70
- b) Horizontal Copper cable:
 - i) For Security Cameras and Multimedia:
 - (1) NO. 23 AWG, 100 ohm, four pair. Panduit PUR6004BU-UY
 - (2) Comply with TIA/EIA-568-B.2 and ANSI/TIA-568-C.2, Category 6e
 - (3) NFPA 70, types CMG and CMP
 - ii) For Main Network:
 - (1) NO. 23 AWG, 100 ohm, four pair. Panduit PUR6X04BU-UY
 - (2) Comply with TIA/EIA-568-B.2 and ANSI/TIA-568-C.2, Category 6A
 - (3) NFPA 70, types CMG and CMP
- c) Cable Connecting Hardware: Comply with TINEIA-568-B.2, IDC type, using modules designed for punch-down caps or tools.
 - IDC Terminal Block Modules: Integral with connector bodies, including plugs and jacks where i) indicated.
- d) Cross-Connect Panel: Modular array of IDC terminal blocks arranged to terminate building cables and permit interconnection between cables.
 - Number of Terminals per Field: One for each conductor in assigned cables plus 25 percent spare. i)
 - ii) Number of Jacks per Field: One for each four-pair UTP cable indicated.
- e) Jacks and Jack Assemblies: As referenced in Charts 1 and 2.
- f) Patch Cords: Factory made, four pair cables, to length as stated in parts reference, matching color to closet zone as referenced in Charts 1 and 2.

MULTIUSER TELECOMMUNICATIONS OUTLET ASSEMBLY

- a) Modular unit suitable for terminating single or multiple horizontal cables in one central location, providing an intermediary point between telecommunications closet and workstation.
 i) NRTL listed as complying with UL 50 and UL 1863.
 ii) Number of Terminals per Field: One for each conductor in assigned cables.
 iii) Number of Connectors per Field:

 (1) One for each four-pair UTP cable indicated.

 - - (2) One for each four-pair conductor group of indicated cables, plus 25 percent spare positions.
- b) Mounting: Owner furnished Modular Walls and Furniture: As provide by modular furniture manufacturer. Reference Charts 1 and 2.

7) WORKSTATION OUTLETS

- a) Jacks: 100-ohm, balanced, twisted-pair connector; four-pair, modular, RJ-45. Comply with TIAIEIA-568-B.1.
- b) Workstation Outlets: Single, dual, triple or quad jack connecter mounted in a single or multi-gang faceplate as shown in the prints.
 - i) Jacks will be the color of the Closet/ Zone they are in. See prints.
 - ii) Faceplate: Flush; high impact plastic; color determined by Architect and or Owner. Part numbers listed in Part Reference.
 - iii) Legend: Contractor printed labels showing Closet then cable number, i.e. A001, A002, B101, C125.

8) MULTIMEDIA OUTLET

a) Jacks: 100-ohm, balanced, twisted-pair connector; four-pair, modular, RJ-45. Comply with TIAIEIA-

568-B.1.

- b) Workstation Outlets: dual connecter mounted in a single faceplate as shown in the prints.
 - i) Jacks will be the color of Violet. See Charts 1 and 2.
 - ii) Faceplate: Flush; high impact plastic; color determined by Architect and or Owner. Part numbers listed in Charts 1 and 2 Part Reference.
- c) Legend: Contractor printed labels showing Closet, M (for MultiMedia) then cable number, i.e. AM01.

9) SECURITY CAMERA OUTLETS

- a) Jacks: 100-ohm, balanced, twisted-pair connector; four-pair, modular, RJ-45. Comply with TIAIEIA-568-B.1.
- b) Workstation Outlets: dual connecter mounted in a single faceplate as shown in the prints.
 - i) Jacks will be the color of Yellow. See Charts 1 and 2.
 - ii) Legend: Contractor printed labels showing Closet, S (for Security) then cable number, i.e. AS01.
 - iii) Outlets will be either in the following configurations according to drawings.
 - (1) If internal wall mount then terminated jack will be placed in the box with a blank faceplate, flush; high impact plastic; color determined by Architect and or Owner.
 - (2) If external wall mount then the terminated jack will be placed on or in the internal inside wall close to the camera mount in a single ganged box with:
 - (a) Faceplate: Flush; high impact plastic; color determined by Architect and or Owner. Part numbers listed in Charts 1 and 2 Part Reference.
 - (3) If ceiling mounted then the terminated jack will be place on top plate of the nearest wall in a single ganged box with:
 - (a) Faceplate: Flush; high impact plastic; color determined by Architect and or Owner. Part numbers listed in Charts 1 and 2 Part Reference.

10) GROUNDING AND BONDING

- a) Materials: Comply with NFPA 70, TINEIA-607, and UL 467.
- b) Reference Charts for what type of hardware is to be used in each Closet.
- c) Reference Manufacturer instructions on what and how grounding should be done if not referenced in this section.
- d) Reference drawings for location of hardware on equipment racks.
- e) Reference Part 2, section 2b), Cable Tray Grounding.

11) IDENTIFICATION PRODUCTS

- a) Reference Steps 7-9 above for labeling legend.
- b) Adhesive-Backed Cable Labels: Use a label-making machine or printer to construct adhesive-backed label tabs from plastic or paper strips. Labels shall be over laminating type in order to protect type-face information with clear Mylar film. Handwritten labels are prohibited
- c) Four-pair UTP cable shall have labels affixed directly to cable jacket:
 - i) Within 3 inches from jack all outlets listed in steps 8-10.
 - ii) Within 6 from jack at patch panels
 - iii) Within 6 from entry into blocks.
- d) Fiber Optic Cables:
 - i) Shall have labels affixed to a label carrier that protects the cable and allows the re-positioning and rotation of the identification label.
 - ii) Warning Label shall be affixed along the consistent distance apart identifying that the cable is an optical fiber.
- e) Wiring Block Labels: Cardboard-like strips or adhesive labels that slip inside or onto clear plastic designation strips or label holders located on protector panels and wiring blocks

 f) Telecommunications Outlet (TO) Labels/Workstations: Use a label-making machine to construct label tabs from plastic or paper strips or adhesive labels. Handwritten labels are unacceptable
 12) CONDUIT SIZING SCHEDULE

	SCHEDULE 1 - Max Number of Cables based upon allowable fill.				
SCHEDULE 0 – Conduit Trade Size	SCHEDULE 2 - Cable outside Diameter, mm (in), [a=Category 3, 6e] or [b=6A, 10Gig]				
	SCHEDULE 3 - 6.1	SCHEDULE 4 - 7.9	SCHEDULE 5 - 9.4	SCHEDULE 6	
	(2.4) [a]	(.31) [b]	(.37) [b]		
SCHEDULE 7 - 27	SCHEDULE 8 - 4	SCHEDULE 9 - 2	SCHEDULE 10-2	SCHEDULE 11	
(1 ")					
SCHEDULE 12 - 35	SCHEDULE 13-5	SCHEDULE 14-4	SCHEDULE 15 - 3	SCHEDULE 16	
(1-1/4")					
SCHEDULE 17 - 41	SCHEDULE 18-6	SCHEDULE 19-4	SCHEDULE 20 - 4	SCHEDULE 21	
(1-1/2")					

13) CONDUIT RUNS

- a) Conduits from any Telecommunication closet, cable tray, horizontal pathway is not allowed except in the following:
 - i) Conduit can be from the TO to the top of the wall with a minimum of 4 inches exposed. Preferred is1 foot above the wall with 90 degree bend so that the cable repair margin can be Velcro wrapped into the bend of the conduit. All exposed ends of conduits will have a EMT screw connector with plastic bushing to protect the cable from nicks.
 - ii) A 2-inch conduit is required to each wall-mounted box that supports a multi-user telecommunications outlet assembly (MUTOA). A MUTOA is a special type of telecommunications outlets that can support up to 12 voice/data jacks. It is suitable for use in locations where there is a cluster of machines where each one is within 15 feet from the MUTOA.
 - iii) Flexible conduits such as metallic flexible conduit are not to be used as pathways for telecommunications cables to avoid sheath damage to the cables. Therefore, the use of flexible conduits as pathway for telecommunications cables must be avoided at all times.
 - iv) Minimize the amount of turns/curve in the conduit from the top of wall to the gang box. If under a window or opening, reroute conduit to place straight down next to window or opening.

14) TELECOMMUNICATIONS EQUIPMENT ROOM (T-E-R)

- a) A telecommunications equipment room (T-E-R) is where the entrance conduits terminate. It is usually located on the ground floor but may also be located in the basement. A T-E-R typically functions as the main cross-connect (MCC). It is the main telecommunications serving point for the building. It will contain telecommunications equipment, much of it mounted on 19" 4 post racks. Cables will be spliced and terminated on the walls. It is important that the entrance conduits stub up in the T-E-R as close to a corner as possible.
- b) When designing the T-E-R floor space1, allowance shall be made for non-uniform occupancy, throughout the building. The practice is to provide 0.07 m2 (0.75 ft') of equipment room space for every 10 m2 (100 ft') of work area space. The equipment room shall be designed to a minimum of 14 m2 (150 ft'). See section 8.2 of TIAIEIA-569 pg.72 for more information. In the case of smaller buildings see annex B.3 of the TIAIEIA-569.
- c) In certain buildings, the T-E-R will be further designated as a Node Room. A Node Room is used as a

cabling hub not just for that building but for other buildings in that neighborhood of the campus. A Node Room requires additional space, air conditioning, and additional entrance conduits. It may require 30 amp outlets. In some cases, where a Node Rooms is designated in a building, a separate TR on the same floor as the Node Room may be required.

- d) CN-NTD will advise FD&C and the architect in the initial planning stage if a Node Room has been designated, No water sprinklers may be installed in a Node Room. A separate fire suppression system, based on one of the approved replacements for Halon, must be installed in coordination with CN Risk Management
- e) A Node Room will house PBX telephone switching equipment, large wet- or dry-cell batteries, routers for campus wide area network (WAN), related local area network (LAN) switches, optical fiber cross connects and optical communications gear. Hence, it should be located so that it is accessible for the delivery of large equipment throughout its useful life. It must be at least 10' from a potential source of EMI (motors, transformers, photocopying equipment, etc.).

15) TELECOMMUNICATIONS ROOMS (TRS)

a) TRs are smaller than T-E-Rs. They are the cabling hubs for floors within a building. They also contain network electronics, typically mounted in 19" - 4 post racks. See table 7.2-1 of TIAIEIA. 569 pg. 66 for more information.

16) ELEVATOR PHONES

a) Elevator phones are cabled to each elevator equipment room. There must be at least one TO in the elevator equipment room that is cabled to the Main telecom room. There must be a dedicated number of jacks on the TO so to accommodate all elevators in the building. Recommend that there be one phone block dedicated to Safety and Security to be easily identified.

PART 3 – EXECUTION

1) INSTALLATION STANDARDS

- a) Reference Part 1 General,
 - i) Section 2) STANDARDS AND CODE COMPLIANCE REFERENCES
 - ii) Section 3) ADDITIONAL SUPPPORT
- b) The most recent versions of all documents apply to this project. If there is a conflict between applicable documents, the order above shall dictate the order of precedence in resolving the issue unless an enforceable local or national code is in effect.

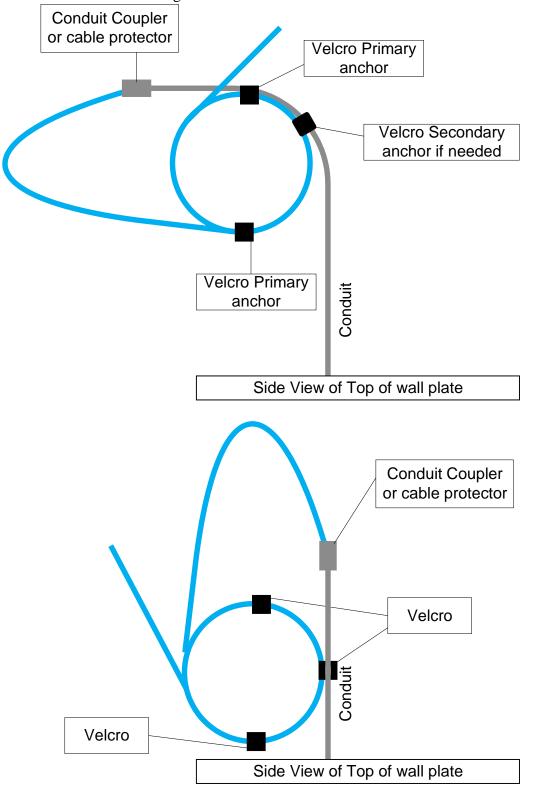
2) APPLICATION OF MEDIA

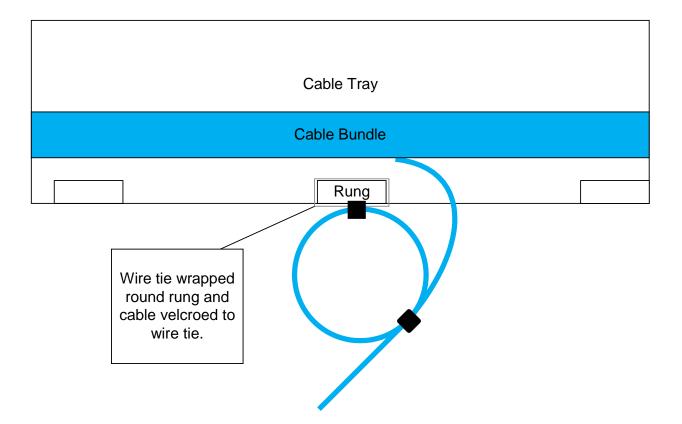
- a) Backbone Cable for Data Service: 10Gig 24 fiber cable for runs between equipment rooms and wiring closet and for runs between closets.
- b) Backbone Cable for Multimedia Service: UTP Category 6e cable to be run from Closet "A" Multimedia panel to each of the other closet multimedia patch panels, i.e. A to B, A to C, A to D, A to E. The cable will be terminated as the last port on the patch panel, i.e 21, 22, 23, 24.
- c) Backbone Cable for Telecommunications to run from Telecom Entrance Room to each closet, terminated at the Telecom patch panel, reference locations on drawings.
- d) Horizontal Cable for Data Service: 10Gig UPT Category 6A cable for runs between wiring closets and workstation outlets.
- e) Horizontal Cable for Security Cameras:
 - i) UTP Category 6e cable for runs between wiring closets and equipment. Starting at port 1 on Security Camera patch panel.
 - ii) Fiber Optic 6-fiber cable for runs from closet to lamp posts in parking lot. Terminating in fiber box.

f) Horizontal cable for Multimedia Service: UTP Category 6e cable for runs between wiring closets and equipment. Starting at port 1 on Multimedia patch panel.

3) WORKMANSHIP

- a) Manufactured products, materials, equipment, and components shall be provided, conditioned, applied, installed, connected, and tested in accordance with the manufacturer's specifications and printed instructions.
- b) The installation of all system components shall be carried out under the direction of qualified personnel. Appearance shall be considered as important as mechanical and electrical efficiency. Workmanship shall meet or exceed industry standards. All work shall be performed in a high quality manner and the overall appearance shall be clean, neat and orderly.
- c) The vendor/contractor and subcontractor will have the following personnel on site during install:
 - i) Supervisor for every 4 Panduit Certified Copper and Fiber Technicians (PCT)
 - (1) If the supervisor is a PCT, the supervisor can also have up to a maximum of 4 non-certified PCT's.
 - ii) A PCT can have up to a maximum of 4 non-certified PCT's.
 - iii) If subcontracted, each supervisor is responsible to the primary site vendor/contractor.
 - (1) Primary supervisor has no limit to subcontractor supervisor to manage.
 - (2) Primary supervisor will then have an assistant supervisor who will supervise as follows:
 - (a) If the assistant supervisor is a PCT, the supervisor can also have up to a maximum of 4 non-certified PCT's.
- d) Inspection
 - i) The Contractor must allow Owner, its Consultants, Construction Manager, CNIT, their agents and the manufacturer's agent to observe and evaluate workmanship and can have problems corrected or work halted until corrected.
 - ii) On-going inspections shall be performed during construction by the project manager Owner, its Consultants, Construction Manager, CNIT their agents. All work shall be performed in a high quality manner and the overall appearance shall be clean, neat and orderly.


4) INSTALLATION


- a) Comply with:
 - i) Reference Part 1 –General,
 - ii) Section 2) STANDARDS AND CODE COMPLIANCE REFERENCES
 - iii) Section 3) ADDITIONAL SUPPPORT
 - iv) The most recent versions of all documents apply to this project. If there is a conflict between applicable documents, the order above shall dictate the order of precedence in resolving the issue unless an enforceable local or national code is in effect.
- b) Wiring Method: Install cables in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces. Cable trays shall be as standardized by CNIT using ladder type cable trays.
- c) The path for the cable tray shall be clear of obstructions, such as HVAC ducts, large pipes and structural beams within the building. Use of enclosed tray and conduits is not allowed. Elevations of trays will be minimized as to not have a stair step effect. Where fire or smoke barriers are penetrated by the ladder tray, they shall be fire stopped to maintain the rating of the barrier. Alternatively, EZ- Path Systems may be used through the penetrations. The number of sleeves required depends on the number of cables and size of tray. Use 50% fill ratio to determine the number of sleeves. Two additional spare sleeves should be installed to accommodate future cable placement.
- d) Place cable trays above drop ceilings in corridors. Do not place them above offices, patient/treatment rooms or inaccessible spaces. There must be at least 4 inches of vertical space between the suspended ceiling tile and the bottom of the cable tray; 12 inches of vertical clearance from the top of the cable tray

to the true ceiling; and 2' total side clearance (i.e. if the cable tray is wall mounted and there is no clearance on one side, then minimum clearance on the other side should be 2'.

- e) It is desirable that the cable tray originates from the TR. If the TR is surrounded with smoke or fire rated walls then EZ-Path systems will be installed
- f) Access ceiling panels must be installed at 5-foot interval if cable tray is passing through a hard or solid ceiling. The panels should be within 1-1/2 feet from the cable tray. They shall not be mounted directly underneath the cable tray. Trays shall not change level or change direction if placed above a hard or solid ceiling.
- g) All metallic cable trays must be grounded but should not be used as grounding conductor for equipment.
- Wiring Method: Install cables in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use UL-listed plenum cable in environmental air spaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.
- i) Wiring within Wiring Closets and Enclosures:
 - i) Install 3/4" void free A-C grade (or better) plywood with 2 coats of fire retardant paint on walls of equipment rooms and wiring closet from floor to ceiling.
 - ii) Mount patch panels, terminal strips, and other connecting hardware on floor-mounted racks. Reference drawings for placement.
- j) Horizontal Fiber Optic to the parking lot lampposts:
 - i) Pull will be from the rack mount fiber box designated for security systems to the lamppost.
 - ii) Terminate each fiber at rack end and mount into fiber box.
 - iii) At lamp post leave the equivalent of twice the pole height inside the base opening. Do not terminate cable. Seal cable with weather proof tape. Cable will be terminated and tested by owner.
- k) Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated cross-connects, patch panels, workstations or locations as indicated in the Drawings.
- Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
- m) Lacing/tie wraps will be accomplished by Velcro strapping. The strap must be able be rotatable without slipping. NO WIRE TIES WILL BE USED ON ANY CABLE OR CABLE BUNDLES.
- n) Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
- o) Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii. Use lacing bars and distribution spools.
- p) Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- q) Cold-Weather Installation: Bring cable to room temperature before de-reeling. Heat lamps shall not be used for heating.
- r) In the communications equipment room, install a 3-5 foot long service loop on each end of cable neatly stored inside the Vertical management.
- s) Pulling Cable: Comply with BICSI ITSIM, Chapter. 4, "Pulling Cable." Monitor cable pull tensions.
- t) Only anchor the cable bundles at the network room cable trays starting at the top when it comes down into the room down to the racks.
- u) When cable drops come off the tray it will go between the rungs. No cable will come over the top and bent over the edge. If the cable is to be pulled through the red iron the cable will go through the bottom of the cable tray between the rungs then up to the red iron. The only time cable will go over the edge of the cable tray is if another tray is connected at an angle to that tray and the cable is changing directions.

v) When the cable is installed there will be a minimum of 3ft of cable at drop location end for repair margin. If the drop is within 10ft of the cable tray, the repair margin can be anchored under the cable tray to one of the rungs. If more than 10ft then the repair margin will be anchored to the drops conduit above the wall. If there is not enough conduit then the margin can be anchored to the nearest red iron. Do not anchor to an electrical conduit. See drawings. When anchoring to the cable tray, wrap a plastic wire tie around the rung with the ratchet head below the rung. Then secure the repair margin to the wire tie with Velcro. See drawings:

- w) Separation from EMI Sources:
 - i) NO CONDUITS, POWER CABLE/CONDUCTORS OR EQUIPMENT SHALL BE LAID IN, THROUGH OR ACROSS THE TOP (WITHIN 12 INCHES) THE CABLE TRAY. IF CONDUITS, POWER CABLE/CONDUCTORS OR EQUIPMENT ARE UNDER THE TRAY, STEPS ii-vi BELOW WILL BE FOLLOWED.
 - ii) Comply with BICSI TDMM and TIA/EIA-5 69-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - iii) Separation between open communications cables, cables in nonmetallic raceways or fiber optic cable in armored cable and unshielded power conductors and electrical equipment shall be as follows:
 (1) Electrical Equipment Dating Lass Then 2 bVA: A minimum of 6 in allos
 - (1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 6 inches.
 - (2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
 - (3) Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches.
 - iv) Separation between communications cables in grounded metallic raceways/conduit and unshielded power lines or electrical equipment shall be as follows:
 - (1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 6 inches.
 - (2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
 - (3) Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches.
 - v) Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - (1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 1 inch.
 - (2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
 - (3) Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches.
 - vi) Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
 - vii) Separation between Communications Cables and Fluorescent Fixtures:

- (1) A minimum of 6 inches if cable is running perpendicular (90deg) to the fixture.
- (2) A minimum of 2ft if running parallel to the fixture (including cable tray). If less than, reroute cable from another direction or have fixture moved.

5) GROUNDING

- a) Grounding will be in accordance with the Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications J-STD-607 -A. Within the telecommunications room, Cable Tray should be bonded together, electrically continuous, and bonded to the TGB. Cable Tray and turns shall be bonded across each splice with a bonding kit (40164-001 or 025). Cable Tray shall be bonded to the Telecommunications Grounding Busbar (TGB) using an approved ground lug on the Cable Tray and a minimum #6 grounding wire. Remove paint from the Cable Tray where bonding/ground lugs contact the Cable Tray so that the lug will contact bare metal. Use antioxidant joint compound in between the bare metal on the Cable Tray and ground lug. Use antioxidant joint compound in between the bus bar and the ground lug. Verify continuity through the bonds at splices and intersections between individual Cable Tray sections and turns and through the bond to the TGB.
- b) Reference NFPA 70 (latest Edition) Article 250 for other grounding requirements.
- c) Grounding of patch panels, fiber boxes or equipment brackets to the racks can be accomplished by one Panduit bonding screw (reference Charts 1 and 2) on each side securing the bracket to the rack. Use of antioxidant paste is required.

6) IDENTIFICATION

- a) Comply with TINEIA-606-A.
 - i) Administration class for this Project shall be Class 4.
 - ii) Color-code cross-connect and telecom fields. Apply colors to voice and data service backboards, connections, covers, and labels.
- b) Use logical and systematic designations for facility's architectural arrangement and nomenclature, and a consistent color-coded identification of individual conductors.
 - i) Jacks will be the color of the Closet/ Zone they are in. See Drawings.
 - (1) Closet "A" Blue
 - (2) Closet "B" Orange
 - (3) Closet "C" Green
 - (4) Closet "D" Red
 - (5) Closet "E" Off White
 - (6) Security Cameras Yellow
 - (7) Multimedia Violet
- c) Reference Part 2 Products, Section 12.
- d) Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet (4.5 m).
- e) Label each terminal strip and screw terminal in each cabinet, rack, or panel if applicable.
- f) Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
- g) Cabling Administration Drawings: Show building floor plans with cable administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors. Follow convention of TIAIEIA-606-A. Furnish electronic record of all drawings, in software and format selected by Owner.

7) FIELD QUALITY CONTROL

- a) Perform the following field tests and inspections and prepare test reports following the Standards and Code Compliance References for the following:
 - i) Category 6a UTP Cabling Tests:
 - (1) Test instruments shall meet or exceed applicable requirements as defined in the TIA Cat 6A Standard. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration. Owner prefers that tester be the Fluke DTX-1800 as owner can except all test reports in the LinkWare file format. The tester will have current calibration sticker attached and a copy of sticker or calibration certificate attached to final documentation.
 - (2) Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - (3) Wire-map test that reports open circuits, short circuits, crossed pairs, reversed pairs, split pairs, and improper terminations.
 - (4) Channel and permanent link tests for cable length, insertion loss, near-end crosstalk loss, power sum near-end crosstalk loss, equal-level far-end crosstalk loss, power sum equal level far-end crosstalk, return loss, propagation delay, and delay skew. Performance shall comply with guaranteed channel performance up to 500MHz.
 - (5) Alien Crosstalk will not be required.
 - ii) Category 6a UTP Cabling Tests:
 - (1) Test instruments shall meet or exceed applicable requirements as defined in the TIA Cat 6A Standard. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration. Owner prefers that tester be the Fluke DTX-1800 as owner can except all test reports in the LinkWare file format. The tester will have current calibration sticker attached and a copy of sticker or calibration certificate attached to final documentation.
 - (2) Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - (3) Wire-map test that reports open circuits, short circuits, crossed pairs, reversed pairs, split pairs, and improper terminations.
 - (4) Channel and permanent link tests for cable length, insertion loss, near-end crosstalk loss, power sum near-end crosstalk loss, equal-level far-end crosstalk loss, power sum equal level far-end crosstalk, return loss, propagation delay, and delay skew. Performance shall comply with guaranteed channel performance up to 500 MHz.
 - iii) Back Bone Fiber Cable
 - (1) Test instruments shall meet or exceed applicable requirements. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration. Owner prefers that tester be the Fluke DTX-1800 as owner can except all test reports in the LinkWare file format. The tester will have current calibration sticker attached and copy of sticker or calibration certificate attached to final documentation.
 - (2) Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components. Inspect cabling terminations in communications equipment rooms for compliance with color-coding.
 - (3) Optical Fiber Cable Tests:
 - (a) Field-test instruments shall have the latest software and firmware installed.
 - (b) Link and channel test results from the OLTS and OTDR shall be recorded in the test instrument upon completion of each test for subsequent uploading to a PC in which the administrative documentation (reports) may be generated.

- (c) Fiber end-faces shall be inspected at 200X or 400X magnification. 200X magnification is suitable for inspecting multimode and singlemode fibers. 400X magnification may be used for detailed examination of singlemode fibers. Scratched, pitted or dirty connectors shall be diagnosed and corrected.
 - (i) If possible it is preferable that the end-face images be recorded in the memory of the test instrument for subsequent uploading to a PC and reporting.
- (d) Testing shall be performed on each cabling segment (connector to connector).
- (e) Testing shall be performed on each cabling channel (equipment to equipment) that is planned for use per the owner's instructions.
- (f) Testing of the cabling shall be performed using high-quality test cords of the same fiber type as the cabling under test. The test cords for OLTS testing shall be between 1 m and 5 m in length. The test cords for OTDR testing shall be approximately 100 m for the launch cable and at least 25 m for the receive cable.
- (g) Optical loss testing
 - (i) Backbone link
 - 1. Multimode backbone links shall be tested at 850 nm and 1300 nm in accordance with ANSI/EIA/TIA-526-14A, Method B, One Reference Jumper or the equivalent method.
 - 2. Link attenuation does not include any active devices or passive devices other than cable, connectors, and splices, i.e. link attenuation does not include such devices as optical bypass switches, couplers, repeaters, or optical amplifiers.
 - 3. Use the One Reference Jumper Method specified by ANSI/TIA/EIA-526-14A, Method B and ANSI/TIA/EIA-526-7, Method A. 1 or the equivalent method. The user shall follow the procedures established by these standards or application notes to accurately conduct performance testing.
- (h) OTDR Testing
 - (i) Backbone, horizontal and centralized links shall be tested at the appropriate operating wavelengths for anomalies and to ensure uniformity of cable attenuation and connector insertion loss.
 - (ii) Backbone multimode: 850 nm and 1300 nm
 - (iii)Each fiber link and channel shall be tested in one direction.
 - (iv) A launch cable shall be installed between the OTDR and the first link connection.
 - (v) A receive cable shall be installed after the last link connection.
- (i) Magnified Endface Inspection
 - (i) Fibers shall be inspected at 250X or 400X magnification. The 250X magnification is suitable for inspecting multimode and singlemode fibers.
 400X magnification may be used for detailed examination of singlemode fibers.
- (j) Length Measurement
 - (i) The length of each fiber shall be recorded.
 - (ii) It is preferable that the optical length be measured using an OLTS or OTDR.
- (k) A Fail or Fail* result must be diagnosed corrected and retested.
 - (i) If not able to be corrected then remove, replace cabling and retest where test results indicate that they do not comply with specified requirements and the cost shall be borne by the installation contractor
 - (ii) If the results cannot be corrected then the installation contractor may bring in the manufacture's agent, technician or engineer and the cost shall be borne by the installation contractor. If determined that the problem cannot be corrected then under supervision of

the end-user, the representative shall repeat 100% removal, reinstallation and testing and the cost shall be borne by the installation contractor.

- iv) Horizontal Fiber Optic to the parking lot lampposts.
 - (1) Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components. Inspect cabling terminations in communications equipment rooms for compliance with color-coding.
 - (2) Visual light test connection with bright light or visible light.
 - (a) If not visible, terminate cable and test as an iii) Back Bone Fiber Cable to trouble shoot. If fail must be diagnosed corrected and retested.
 - (i) If not able to be corrected then remove, replace cabling and retest where test results indicate that they do not comply with specified requirements and the cost shall be borne by the installation contractor
 - (ii) If the results cannot be corrected then the installation contractor may bring in the manufacture's agent, technician or engineer and the cost shall be borne by the installation contractor. If determined that the problem cannot be corrected then under supervision of the end-user, the representative shall repeat 100% removal, reinstallation and testing and the cost shall be borne by the installation contractor.

(3) Cable will be final tested by Owner at a later date.

- v) Cable Samples, the 6a & 6e cable will be tested and added to documentation and warranty.(1) Use the samples to check verification of manufacturer recommendations for setting the testers.
- b) Trained technicians who have successfully attended an appropriate training program and have obtained a certificate as proof thereof shall execute the tests. Appropriate training programs include but are not limited to installation certification programs provided by BICSI or the ACP (Association of Cabling Professionals). A copy of the certification will be attached to final documentation.
- c) One hundred percent of the installed cabling links must pass the requirements of the standards mentioned above except as noted. Any failing link must be diagnosed and corrected. The corrective action shall be followed with a new test to prove that the corrected link meets the performance requirements. The final and passing result of the tests for all links shall be provided in the test results documentation.
- d) The tester interface adapters must be of high quality and the cable shall not show any twisting or kinking resulting from coiling and storing of the tester interface adapters. In order to deliver optimum accuracy, preference is given to a permanent link interface adapter for the tester that can be calibrated to extend the reference plane of the Return Loss measurement to the permanent link interface. The contractor shall provide proof that the interface has been calibrated within the period recommended by the Manufacturer. To ensure that normal handling on the job does not cause measurable Return Loss change, the adapter cord cable shall not be of twisted-pair construction.
- e) The Pass or Fail condition for the link-under-test is determined by the results of the required individual tests (detailed in Section I.2.2 of ANSI/TIA/EIA-568-B.2). Any Fail or Fail* result yields a Fail for the link-under-test. In order to achieve an overall Pass condition, the results for each individual test parameter must Pass or Pass*.
 - A Pass or Fail result for each parameter is determined by comparing the measured values with the specified test limits for that parameter. The test result of a parameter shall be marked with an asterisk (*) when the result is closer to the test limit than the accuracy of the field tester. The field tester manufacturer must provide documentation as an aid to interpret results marked with asterisks. To which extent '*' results shall determine approval or disapproval of the element under test shall be defined in the relevant detail specification, or agreed on as a part of a contractual specification.
 - ii) A Fail or Fail* result must be diagnosed corrected and retested.

- (1) If not able to be corrected then remove, replace cabling and retest where test results indicate that they do not comply with specified requirements and the cost shall be borne by the installation contractor
- (2) If the results cannot be corrected then the installation contractor may bring in the manufacture's agent, technician or engineer and the cost shall be borne by the installation contractor. If determined that the problem cannot be corrected then under supervision of the end-user, the representative shall repeat 100% removal, reinstallation and testing and the cost shall be borne by the installation contractor.
- f) Additional Requirements:
 - i) A representative of the end-user shall be invited to witness field testing. The representative shall be notified of the start date of the testing phase five business days before testing commences.
 - ii) At an agreed time a representative of the end-user will select a random sample of 10% of the installed links. The representative (or his authorized delegate) shall test these randomly selected links and the results are to be stored in a separate documentation that will be attached with final documentation (but does not have to be submitted for warranty). The results obtained shall be compared to the data provided by the installation contractor. If more than 3% of the sample results differ in terms of the pass/fail determination:
 - (1) The installation contractor under supervision of the end-user representative shall repeat 100% testing and the cost shall be borne by the installation contractor.
 - (2) If the results cannot be corrected then the installation contractor may bring in the manufacture's agent, technician or engineer and the cost shall be borne by the installation contractor. If determined that the problem cannot be corrected then under supervision of the end-user, the representative shall repeat 100% removal, reinstallation and testing and the cost shall be borne by the installation contractor.

8) TEST RESULTS DOCUMENTATION

- a) The test results/measurements shall be transferred into a WindowsTM-based database utility that allows for the maintenance, inspection and archiving of these test records. A guarantee must be made that the measurement results are transferred to the PC unaltered, i.e., "as saved in the tester" at the end of each test and that these results cannot be modified at a later time. The file format, CSV (comma separated value), does not provide adequate protection of these records and shall not be used. Owner prefers that the test results/measurements be in the LinkWare file format.
- b) The database for the completed job shall be stored and delivered on CD-ROM or DVD including the software tools required to view, inspect, and print any selection of test reports.
- c) A paper copy of the test results shall be provided that lists all the links that have been tested with the following summary information
 - i) The identification of the link in accordance with the naming convention defined in the overall system documentation
 - ii) The overall Pass/Fail evaluation of the link-under-test including the NEXT Headroom (overall worst case) number
 - iii) The date and time the test results were saved in the memory of the tester.
- d) General Information to be provided in the electronic data base with the test results information for each link:
 - i) The identification of the customer site as specified by the end-user
 - ii) The name of the personnel performing the test
 - iii) The identification of the link in accordance with the naming convention defined in the overall system documentation

- iv) The overall Pass/Fail evaluation of the link-under-test
- v) The name of the standard selected to execute the stored test results
- vi) The date and time the test results were saved in the memory of the tester
- vii) The brand name, model and serial number of the tester
- viii) The identification of the tester interface
- ix) The revision of the tester software and the revision of the test standards database in the tester
- x) The test results information must contain information on each of the required test parameters that are listed.
- e) For all copper (6a & 6e)
 - i) The cable type and the value of NVP used for length calculations
 - ii) In-link (In-Channel) detailed test results. The detailed test results data to be provided in the electronic database for must contain the following information:
 - iii) For each of the frequency-dependent test parameters, the value measured at every frequency during the test is stored. The PC-resident database program must be able to process the stored results to display and print a color graph of the measured parameters. The PC-resident software must also provide a summary numeric format in which some critical information is provided numerically as defined by the summary results (minimum numeric test results documentation) as outlined above for each of the test parameters.
 - (1) Length: Identify the wire-pair with the shortest electrical length, the value of the length rounded to the nearest 0.1 m (1) and the test limit value.
 - (2) Propagation delay: Identify the pair with the shortest propagation delay, the value measured in nanoseconds (ns) and the test limit value.
 - (3) Delay Skew: Identify the pair with the largest value for delay skew, the value calculated in nanoseconds (ns) and the test limit value.
 - (4) Insertion Loss (Attenuation): Minimum test results documentation as explained in Section B for the worst pair.
 - (5) Return Loss: Minimum test results documentation as explained in Section B for the worst pair as measured from each end of the link.
 - (6) NEXT, ACR-F: Minimum test results documentation as explained in Section B for the worst pair combination as measured from each end of the link.
 - (7) PS NEXT and PS ACR-F: Minimum test results documentation as explained in Section B for the worst pair as measured from each end of the link.
 - iv) Between-Link (Between-Channel) Test Results Data
 - v) A test report shall be provided for each disturbed link included in the Alien Crosstalk sample test. This test report must contain:
 - (1) PS ANEXT results at each frequency (See Table 1) for each wire pair in a victim link as well as the PS ANEXT results for the average of these four wire pairs. The worst case margin and the worst values shall be provided for each wire pair and the average of the four wire pairs. PS ANEXT shall be measured and tested from the end of the link or channel where all cables are terminated at a distribution panel. In case the cabling runs from panel to panel (data center) where the worst case PS ANEXT margin is less than 2 dB, the PS ANEXT test results for each disturbed link shall be collected and saved from both ends (both panels) of the disturbed link.

(2) PS AACR-F results at each frequency tested for each wire pair in a disturbed link as well as the PS AACR-F results for the average of the four wire pairs. The worst case margin and the worst values shall be provided for each wire pair and the average of the four wire pairs. PS AACR-F only needs to be measured and tested from one end of the link or channel.

f) Fiber tests:

- i) The fiber identification number.
- ii) The length for each optical fiber.
 - (1) Optionally the index of refraction used for length calculation when using a length capable OLTS.
- iii) Test results to include OLTS attenuation link and channel measurements at the appropriate wavelength(s) and the margin (difference between the measured attenuation and the test limit value).
- iv) Test results to include OTDR link and channel traces and event tables at the appropriate wavelength(s).
- v) The length for each optical fiber as calculated by the OTDR.
- vi) The overall Pass/Fail evaluation of the link-under-test for OLTS and OTDR measurements.
- vii) A picture or image of each fiber end-face if done.
- viii) A pass/fail status of the end-face based upon visual inspection.

9) CONSTRUCTION REVIEW

- c) The following shall be examined and shall comply satisfactorily in all instances.
 - i) Design documentation complete.
 - ii) All cables properly labeled, from end-to-end.
 - iii) All terminated cables been properly tested in accordance with the specifications for the specific category as well as tested for opens, shorts, polarity reversals, transposition and presence of AC and/or DC voltage.
 - iv) The cable type suitable for its pathway.
 - v) The cables bundled in parallel.
 - vi) The pathway manufacturer's guidelines been followed.
 - vii) All cable penetrations installed properly and fire stopped according to code.
 - viii) The Contractors avoided excessive cable bending.
 - ix) Potential EMI and RFI sources been considered.
 - x) Table Fill is correct.
 - xi) All hanging supports are within 1.5 meters (5 feet).
 - xii) Hanging cable exhibit some sag.
 - xiii) IDF room terminations are compatible with applications equipment.
 - xiv) Patch Panel instructions been followed:
 - (1) Jacket removal point
 - (2) Termination positions
 - (3) All pair terminations tight with minimal pair distortions
 - (4) Twists maintained up to Index Strip
 - xv) Modular Panel instructions been followed:
 - (1) Cable dressing first
 - (2) Jackets remain up to the Connecting Block
 - (3) All pair terminations tight and undistorted
 - (4) Twists maintained up to the Connecting Block

- xvi) Connectors are properly turned right side up in the Jack Panels without cables wrapped or twisted around the Mounting Collars.
- xvii) The correct outlet connectors have been used
- xviii) Outlets have been wired correctly (T568B)
- xix) The cable jacket maintained up to the Jack.
- xx) Identification markings uniform, permanent and readable.
- d) The Owner, its Consultants, Construction Manager, CNIT, and their agents will review and observe installation work to ensure compliance by the contractor with requirements of the Contract Documents.
- e) The contractor shall inspect and test completed communications installations to demonstrate specified performance levels including the following:
 - i) Furnish all instruments and personnel required for the inspections and tests.
 - ii) Perform tests in the presence of the Engineer and Owner when required.
 - iii) Demonstrate that the system components operate in accordance with the Contract Documents.
- f) Review, observation, assistance, and actions by the Owner, its Consultants, Construction Manager, CNIT, and their agents shall not be construed as undertaking supervisory control of the work or of methods and means employed by the contractor. The Owner, its Consultants, Construction Manager, CNIT, and their agents review and observation activities shall not relieve the contractor from the responsibilities of these Contract Documents.
- g) The fact that Owner, its Consultants, Construction Manager, CNIT, and their agents does not make early discovery of faulty or omitted work shall not bar the Owner from subsequently rejecting this work and withholding payment until the contractor makes the necessary corrections.
- h) Regardless of when discovery and rejection are made, and regardless of when the contractor is ordered to correct such work, the contractor shall have no claim against the Owner, its Consultants, Construction Manager, CNIT, and their agents for an increase in the Subcontract price, or for any payment on account of increased cost, damage, or loss.

10) DEFINITION OF ACCEPTANCE

- a) System acceptance shall be defined as that point in time when the following requirements have been fulfilled:
 - i) The complete system has successfully completed all testing requirements.
 - ii) All punch list items have been corrected and accepted.
 - iii) All submittals and documentation have been submitted, reviewed, and approved. Including:
 - (1) A list of the documentation showing what was submitted to Panduit for the CERTIFICATION PLUSSM SYSTEM WARRANTY PROGRAM according to the Panduit Warranty Guide.
 - (a) A copy of the E-form, or Fax is acceptable. Or
 - (b) If mailed, a copy of the package Tracking number is acceptable.
 - (2) Verification of delivery will be done by Owner, its Consultants, CNIT, and their agents with Panduit. If:
 - (a) Verified as delivered then acceptance can continue.
 - (b) Verified as NOT delivered, then the acceptance is not complete.

SECTION 28 3111

DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fire-alarm control unit.
 - 2. Manual fire-alarm boxes.
 - 3. System smoke detectors.
 - 4. Non-system smoke detectors.
 - 5. Heat detectors.
 - 6. Notification appliances.
 - 7. Remote annunciator.
 - 8. Addressable interface device.
 - 9. Network communications.
- B. Related Requirements:
 - 1. Section 28 0513 "Conductors and Cables for Electronic Safety and Security" for cables and conductors for fire-alarm systems.

1.3 **DEFINITIONS**

- A. EMT: Electrical Metallic Tubing.
- B. FACP: Fire Alarm Control Panel.
- C. HLI: High Level Interface.
- D. NICET: National Institute for Certification in Engineering Technologies.
- E. PC: Personal computer.
- F. VESDA: Very Early Smoke-Detection Apparatus.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product, including furnished options and accessories.
 - 1. Include construction details, material descriptions, dimensions, profiles, and finishes.

17-13 OSU, College of Osteopathic Medicine at		DIGITAL, ADDRESSABLE
Cherokee Nation	28 3111 - 1	FIRE-ALARM SYSTEM
Childers Architect		
07-26-19		

- 2. Include rated capacities, operating characteristics, and electrical characteristics.
- B. Shop Drawings: For fire-alarm system.
 - 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - 2. Include plans, elevations, sections, details, and attachments to other work.
 - 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 - 4. Detail assembly and support requirements.
 - 5. Include voltage drop calculations for notification-appliance circuits.
 - 6. Include battery-size calculations.
 - 7. Include input/output matrix.
 - 8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
 - 9. Include performance parameters and installation details for each detector.
 - 10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 - 11. Provide program report showing that air-sampling detector pipe layout balances pneumatically within the airflow range of the air-sampling detector.
 - 12. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.
 - a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 - b. Show field wiring required for HVAC unit shutdown on alarm.
 - c. Show field wiring and equipment required for HVAC unit shutdown on alarm and override by firefighters' control system.
 - d. Show field wiring and equipment required for HVAC unit shutdown on alarm and override by firefighters' smoke-evacuation system.
 - e. Locate detectors according to manufacturer's written recommendations.
 - f. Show air-sampling detector pipe routing.
 - 13. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
 - 14. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.
- C. General Submittal Requirements:
 - 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
 - 2. Shop Drawings shall be prepared by persons with the following qualifications:
 - a. Trained and certified by manufacturer in fire-alarm system design.
 - b. NICET-certified, fire-alarm technician; Level IV minimum.
 - c. Licensed or certified by authorities having jurisdiction.
- D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

- 1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
- 2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
- 3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.

1.6 Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 - a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
 - d. Riser diagram.
 - e. Device addresses.
 - f. Air-sampling system sample port locations and modeling program report showing layout meets performance criteria.
 - g. Record copy of site-specific software.
 - h. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 - 1) Equipment tested.
 - 2) Frequency of testing of installed components.

28 3111 - 3

- 3) Frequency of inspection of installed components.
- 4) Requirements and recommendations related to results of maintenance.
- 5) Manufacturer's user training manuals.
- i. Manufacturer's required maintenance related to system warranty requirements.
- j. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.
- B. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 - 3. Device address list.
 - 4. Printout of software application and graphic screens.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
 - 2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
 - 3. Smoke Detectors, Fire Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than one unit of each type.
 - 4. Detector Bases: Quantity equal to two percent of amount of each type installed, but no fewer than one unit of each type.
 - 5. Keys and Tools: One extra set for access to locked or tamperproofed components.
 - 6. Audible and Visual Notification Appliances: One of each type installed.
 - 7. Fuses: Two of each type installed in the system. Provide in a box or cabinet with compartments marked with fuse types and sizes.
 - 8. Filters for Air-Sampling Detectors: Quantity equal to two percent of amount of each type installed, but no fewer than one unit of each type.
 - 9. Air-Sampling Fan: Quantity equal to one for every five detectors, but no fewer than one unit of each type.

1.9 QUALITY ASSURANCE

- A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
- B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level IV technician.
- C. NFPA Certification: Obtain certification according to NFPA 72 by an NRTL (nationally recognized testing laboratory).
- D. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.
- E. NFPA Certification: Obtain certification according to NFPA 72 in the form of a placard by an FM Global-approved alarm company.

28 3111 - 4

F. NFPA Certification: Obtain certification according to NFPA 72 by.

1.10 PROJECT CONDITIONS

- A. Perform a full test of the existing system prior to starting work. Document any equipment or components not functioning as designed.
- B. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
 - 1. Notify Construction Manager no fewer than seven days in advance of proposed interruption of fire-alarm service.
 - 2. Do not proceed with interruption of fire-alarm service without Construction Manager's written permission.
- C. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.

1.11 SEQUENCING AND SCHEDULING

- A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service, and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.
- B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

1.12 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Source Limitations for Fire-Alarm System and Components: Components shall be compatible with, and operate as an extension of, existing system. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.
- B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.
- C. Automatic sensitivity control of certain smoke detectors.

28 3111 - 5

- D. All components provided shall be listed for use with the selected system.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

- A. Fire-alarm signal initiation shall be by one or more of the following devices:
 - 1. Manual stations.
 - 2. Heat detectors.
 - 3. Flame detectors.
 - 4. Smoke detectors.
 - 5. Duct smoke detectors.
 - 6. Air-sampling smoke-detection system (VESDA).
 - 7. Carbon monoxide detectors.
 - 8. Combustible gas detectors.
 - 9. Automatic sprinkler system water flow.
 - 10. Preaction system.
 - 11. Fire-extinguishing system operation.
 - 12. Fire standpipe system.
 - 13. Dry system pressure flow switch.
 - 14. Fire pump running.
- B. Fire-alarm signal shall initiate the following actions:
 - 1. Continuously operate alarm notification appliances.
 - 2. Identify alarm and specific initiating device at fire-alarm control unit.
 - 3. Transmit an alarm signal to the remote alarm receiving station.
 - 4. Unlock electric door locks in designated egress paths.
 - 5. Release fire and smoke doors held open by magnetic door holders.
 - 6. Activate voice/alarm communication system.
 - 7. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
 - 8. Activate smoke-control system (smoke management) at firefighters' smoke-control system panel.
 - 9. Activate stairwell and elevator-shaft pressurization systems.
 - 10. Close smoke dampers in air ducts of designated air-conditioning duct systems.
 - 11. Activate preaction system.
 - 12. Recall elevators to primary or alternate recall floors.
 - 13. Activate elevator power shunt trip.
 - 14. Activate emergency lighting control.
 - 15. Activate emergency shutoffs for gas and fuel supplies.
 - 16. Record events in the system memory.
 - 17. Record events by the system printer.
 - 18. Indicate device in alarm on the graphic annunciator.
- C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 - 1. Valve supervisory switch.
 - 2. High- or low-air-pressure switch of a dry-pipe or preaction sprinkler system.
 - 3. Alert and Action signals of air-sampling detector system.
 - 4. Elevator shunt-trip supervision.
 - 5. Fire pump running.
 - 6. Fire-pump loss of power.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

28 3111 - 6

- 7. Fire-pump power phase reversal.
- 8. Independent fire-detection and -suppression systems.
- 9. User disabling of zones or individual devices.
- 10. Loss of communication with any panel on the network.
- D. System trouble signal initiation shall be by one or more of the following devices and actions:
 - 1. Open circuits, shorts, and grounds in designated circuits.
 - 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 - 3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
 - 4. Loss of primary power at fire-alarm control unit.
 - 5. Ground or a single break in internal circuits of fire-alarm control unit.
 - 6. Abnormal ac voltage at fire-alarm control unit.
 - 7. Break in standby battery circuitry.
 - 8. Failure of battery charging.
 - 9. Abnormal position of any switch at fire-alarm control unit or annunciator.
 - 10. Voice signal amplifier failure.
 - 11. Hose cabinet door open.
- E. System Supervisory Signal Actions:
 - 1. Initiate notification appliances.
 - 2. Identify specific device initiating the event at fire-alarm control unit.
 - 3. Record the event on system printer.
 - 4. After a time delay of 200 seconds, transmit a trouble or supervisory signal to the remote alarm receiving station.
 - 5. Transmit system status to building management system.
 - 6. Display system status on graphic annunciator.

2.3 FIRE-ALARM CONTROL UNIT

- A. <u>Manufacturers:</u>
 - 1. FCI
 - 2. SimplexGrinnell LP.
 - 3. Notifier
 - 4. (Owner Selection)
- B. General Requirements for Fire-Alarm Control Unit:
 - 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
 - a. System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
 - b. Include a real-time clock for time annotation of events on the event recorder and printer.
 - c. Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
 - d. The FACP shall be listed for connection to a central-station signaling system service.

- e. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.
- 2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.
- 3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.
- C. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 - 1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
 - 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.
- D. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 - 1. Annunciator and Display: Liquid-crystal type, two or three] line(s) of 40 or 80 characters, minimum.
 - 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.
- E. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:
 - 1. Pathway Class Designations: NFPA 72, Class A or Class B.
 - Pathway Survivability: [Level 0 or Level 1.
 - 3. Install no more than 256 addressable devices on each signaling-line circuit.
 - 4. Serial Interfaces:
 - a. One dedicated RS 485 port for central-station or remote station operation using point ID DACT.
 - b. One RS 485 port for remote annunciators, Ethernet module, or multi-interface module (printer port).
 - c. One USB port for PC configuration.
 - d. One RS 232 port for VESDA HLI connection.
 - e. One RS 232 port for voice evacuation interface.
- F. Smoke-Alarm Verification:
 - 1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
 - 2. Activate an approved "alarm-verification" sequence at fire-alarm control unit and detector.
 - 3. Record events by the system printer.
 - 4. Sound general alarm if the alarm is verified.
 - 5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.
- G. Notification-Appliance Circuit:

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

28 3111 - 8

- 1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
- 2. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.
- 3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.

H. Elevator Recall:

- 1. Elevator recall shall be initiated only by one of the following alarm-initiating devices:
 - a. Elevator lobby detectors except the lobby detector on the designated floor.
 - b. Smoke detector in elevator machine room.
 - Smoke detectors in elevator hoistway.
- 2. Elevator controller shall be programmed to move the cars to the alternate recall floor if lobby detectors located on the designated recall floors are activated.
- 3. Water-flow alarm connected to sprinkler in an elevator shaft and elevator machine room shall shut down elevators associated with the location without time delay.
 - Water-flow switch associated with the sprinkler in the elevator pit may have a delay to allow elevators to move to the designated floor.
- I. Door Controls: Door hold-open devices that are controlled by smoke detectors at doors in smoke-barrier walls shall [be] [not be] connected to fire-alarm system.
- J. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivityadjustment schedule changes in system memory, and print out the final adjusted values on system printer.
- K. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.
- L. Voice/Alarm Signaling Service: Central emergency communication system with redundant microphones, preamplifiers, amplifiers, and tone generators provided.
 - Indicate number of alarm channels for automatic, simultaneous transmission of different announcements to different zones or for manual transmission of announcements by use of the central-control microphone. Amplifiers shall comply with UL 1711.
 - a. Allow the application of, and evacuation signal to, indicated number of zones and, at the same time, allow voice paging to the other zones selectively or in any combination.
 - b. Programmable tone and message sequence selection.
 - c. Standard digitally recorded messages for "Evacuation" and "All Clear."
 - d. Generate tones to be sequenced with audio messages of type recommended by NFPA 72 and that are compatible with tone patterns of notification-appliance circuits of fire-alarm control unit.
 - Status Annunciator: Indicate the status of various voice/alarm speaker zones and the status of firefighters' two-way telephone communication zones.

28 3111 - 9

- Preamplifiers, amplifiers, and tone generators shall automatically transfer to backup units, on primary equipment failure.
- M. Printout of Events: On receipt of signal, print alarm, supervisory, and trouble events. Identify zone, device, and function. Include type of signal (alarm, supervisory, or trouble) and date and time of occurrence. Differentiate alarm signals from all other printed indications. Also print system reset event, including same information for device, location, date, and time. Commands initiate the printing of a list of existing alarm, supervisory, and trouble conditions in the system and a historical log of events.
- N. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, shall be powered by 24-V dc source.
 - 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the powersupply module rating.
- O. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.
 - 1. Batteries: Sealed lead calcium.
- P. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.4 MANUAL FIRE-ALARM BOXES

- A. Manufacturers:
 - 1. SimplexGrinnell LP.
 - 2. Notifier
 - 3. Bosch Security Systems
 - 4. (Owner Selection)
- B. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
 - 1. Double-action mechanism requiring two actions to initiate an alarm, pull-lever type; with integral or attached addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 - 2. Station Reset: Key- or wrench-operated switch.
 - 3. Indoor Protective Shield: Factory-fabricated, clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false-alarm operation.
 - 4. Weatherproof Protective Shield: Factory-fabricated, clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm.

2.5 SYSTEM SMOKE DETECTORS

A. <u>Manufacturers:</u>

1. SimplexGrinnell LP.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

28 3111 - 10

- 2. System Sensor
- 3. Bosch Security Systems
- 4. (Owner Selection)
- B. General Requirements for System Smoke Detectors:
 - 1. Comply with UL 268; operating at 24-V dc, nominal.
 - 2. Detectors shall be four or two wire type.
 - 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 - 4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
 - 5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 - 6. Integral Visual-Indicating Light: LED type, indicating detector has operated.
 - 7. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition.
 - a. Rate-of-rise temperature characteristic of combination smoke- and heat-detection units shall be selectable at fire-alarm control unit for 15 or 20 deg per minute.
 - b. Fixed-temperature sensing characteristic of combination smoke- and heatdetection units shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F
 - c. Multiple levels of detection sensitivity for each sensor.
 - d. Sensitivity levels based on time of day.
- C. Photoelectric Smoke Detectors:
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
- D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).

28 3111 - 11

- 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
- 4. Each sensor shall have multiple levels of detection sensitivity.
- 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
- 6. Relay Fan Shutdown: Fully programmable relay rated to interrupt fan motor-control circuit.

2.6 CARBON MONOXIDE DETECTORS

- A. General: Carbon monoxide detector listed for connection to fire-alarm system.
 - 1. Mounting: Adapter plate for outlet box mounting.
 - 2. Testable by introducing test carbon monoxide into the sensing cell.
 - 3. Detector shall provide alarm contacts and trouble contacts.
 - Detector shall send trouble alarm when nearing end-of-life, power supply problems, or internal faults.
 - 5. Comply with UL 2075.
 - 6. Locate, mount, and wire according to manufacturer's written instructions.
 - 7. Provide means for addressable connection to fire-alarm system.
 - 8. Test button simulates an alarm condition.

2.7 HEAT DETECTORS

- A. <u>Manufacturers:</u>
 - 1. SimplexGrinnell LP.
 - 2. System Sensor
 - 3. Bosch Security Systems
 - 4. (Owner Selection)
- B. General Requirements for Heat Detectors: Comply with UL 521.
 - 1. Temperature sensors shall test for and communicate the sensitivity range of the device.
- C. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
 - 1. Mounting: [Adapter plate for outlet box mounting] [Twist-lock base interchangeable with smoke-detector bases].
 - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
- D. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 190 deg F.
 - 1. Mounting: [Adapter plate for outlet box mounting] [Twist-lock base interchangeable with smoke-detector bases].
 - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
- E. Continuous Linear Heat-Detector System:

28 3111 - 12

- 1. Detector Cable: Rated detection temperature 155 deg F. Listed for "regular" service and a standard environment. Cable includes two steel actuator wires twisted together with spring pressure, wrapped with protective tape, and finished with PVC outer sheath. Each actuator wire is insulated with heat-sensitive material that reacts with heat to allow the cable twist pressure to short circuit wires at the location of elevated temperature.
- 2. Control Unit: Two-zone or multizone unit as indicated. Provide same system power supply, supervision, and alarm features as specified for fire-alarm control unit.
- 3. Signals to Fire-Alarm Control Unit: Any type of local system trouble shall be reported to fire-alarm control unit as a composite "trouble" signal. Alarms on each detection zone shall be individually reported to central fire-alarm control unit as separately identified zones.
- 4. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.8 NOTIFICATION APPLIANCES

- A. <u>Manufacturers:</u>
 - 1. SimplexGrinnell LP.
 - 2. Gentex Corp.
 - 3. Siemens Industry, Inc.
 - 4. (Owner Selection)
- B. General Requirements for Notification Appliances: Individually addressed, connected to a signaling-line circuit, equipped for mounting as indicated, and with screw terminals for system connections.
- C. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 - 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.
- D. Chimes, Low-Level Output: Vibrating type, 75-dBA minimum rated output.
- E. Chimes, High-Level Output: Vibrating type, 81-dBA minimum rated output.
- F. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.
- G. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- high letters on the lens.
 - 1. Rated Light Output:
 - a. [15] [30] [75] [110] [175] cd.
 - b. 15/30/75/110 cd, selectable in the field.
 - 2. Mounting: Wall mounted unless otherwise indicated.

28 3111 - 13

- 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
- 4. Flashing shall be in a temporal pattern, synchronized with other units.
- 5. Strobe Leads: Factory connected to screw terminals.
- 6. Mounting Faceplate: Factory finished, [red] [white].
- H. Voice/Tone Notification Appliances:
 - 1. Comply with UL 1480.
 - 2. Speakers for Voice Notification: Locate speakers for voice notification to provide the intelligibility requirements of the "Notification Appliances" and "Emergency Communications Systems" chapters in NFPA 72.
 - 3. High-Range Units: Rated 2 to 15 W.
 - 4. Low-Range Units: Rated 1 to 2 W.
 - 5. Mounting: Flush.
 - 6. Matching Transformers: Tap range matched to acoustical environment of speaker location.

I. Exit Marking Audible Notification Appliance:

- Exit marking audible notification appliances shall meet the audibility requirements in NFPA 72.
- 2. Provide exit marking audible notification appliances at the entrance to all building exits.
- 3. Provide exit marking audible notification appliances at the entrance to areas of refuge with audible signals distinct from those used for building exit marking.

2.9 GRAPHIC ANNUNCIATOR

- A. <u>Manufacturers:</u>
 - 1. SimplexGrinnell LP
 - 2. Siemons Industry, Inc.
 - 3. GE UTC Fire & Security
 - (Owner Selection)
- B. Graphic Annunciator Panel: Mounted in an aluminum frame with nonglare, minimum 3/16-inchthick, clear acrylic cover over graphic representation of the facility. Detector locations shall be represented by red LED lamps. Normal system operation shall be indicated by a lighted, green LED. Trouble and supervisory alarms shall be represented by an amber LED.
 - 1. Comply with UL 864.
 - Operating voltage shall be 24-V dc provided by a local 24-V power supply provided with the annunciator.
 - Include built-in voltage regulation, reverse polarity protection, RS 232/422 serial communications, and a lamp test switch.
 - Surface mounted in a NEMA 250, Type 1 cabinet, with key lock and no exposed screws or hinges.
 - Graphic representation of the facility shall be a CAD drawing and each detector shall be represented by an LED in its actual location. CAD drawing shall be at 1/8-inch per foot scale or larger.
 - 6. The LED representing a detector shall flash two times per second while detector is an alarm.
- C. Graphic Annunciator Workstation: PC-based, with fire-alarm annunciator software with historical logging, report generation, and a graphic interface showing all alarm points in the system. PC

28 3111 - 14

with operating system software, minimum hard drive, <Insert inches digital display monitor, with wireless keyboard and mouse.

2.10 REMOTE ANNUNCIATOR

- A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 - 1. Mounting: [Flush] [Surface] cabinet, NEMA 250, Type 1.
- B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.11 ADDRESSABLE INTERFACE DEVICE

- A. General:
 - 1. Include address-setting means on the module.
 - 2. Store an internal identifying code for control panel use to identify the module type.
 - 3. Listed for controlling HVAC fan motor controllers.
- B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.
- C. Integral Relay: Capable of providing a direct signal.
 - 1. Allow the control panel to switch the relay contacts on command.
 - 2. Have a minimum of two normally open and two normally closed contacts available for field wiring.
- D. Control Module:
 - 1. Operate notification devices.
 - 2. Operate solenoids for use in sprinkler service.

2.12 NETWORK COMMUNICATIONS

- A. Provide network communications for fire-alarm system according to fire-alarm manufacturer's written requirements.
- B. Provide network communications pathway per manufacturer's written requirements and requirements in NFPA 72 and NFPA 70.
- C. Provide integration gateway using [BACnet] [Modbus] <Insert protocol> for connection to building automation system.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 - 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.
- B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION

- A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
 - 1. Devices placed in service before all other trades have completed cleanup shall be replaced.
 - 2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.
- B. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.
 - 1. Connect new equipment to existing control panel in existing part of the building.
 - 2. Connect new equipment to existing monitoring equipment at the supervising station.
 - 3. Expand, modify, and supplement existing monitoring equipment as necessary to extend existing monitoring functions to the new points. New components shall be capable of merging with existing configuration without degrading the performance of either system.
- C. Equipment Mounting: Install fire-alarm control unit on finished floor.
 - 1. Comply with requirements for seismic-restraint devices specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."
- D. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.
 - 1. Comply with requirements for seismic-restraint devices specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."
- E. Manual Fire-Alarm Boxes:
 - 1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
 - 2. Mount manual fire-alarm box on a background of a contrasting color.

28 3111 - 16

- 3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.
- F. Smoke- or Heat-Detector Spacing:
 - 1. Comply with the "Smoke-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
 - 2. Comply with the "Heat-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
 - 3. Smooth ceiling spacing shall not exceed 30 feet.
 - 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Annex A in NFPA 72.
 - 5. HVAČ: Locate detectors not closer than 36 inches from air-supply diffuser or return-air opening.
 - 6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.
- G. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.
- H. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.
 - 1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.
- I. Single-Station Smoke Detectors: Where more than one smoke alarm is installed within a dwelling or suite, they shall be connected so that the operation of any smoke alarm causes the alarm in all smoke alarms to sound.
- J. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.
- K. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.
- L. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.
- M. Device Location-Indicating Lights: Locate in public space near the device they monitor.
- N. Antenna for Radio Alarm Transmitter: Mount to building structure where indicated. Use mounting arrangement and substrate connection that resists 100-mph wind load with a gust factor of 1.3 without damage.

3.3 PATHWAYS

- A. Pathways above recessed ceilings and in no accessible locations may be routed exposed.
 - 1. Exposed pathways located less than 96 inches above the floor shall be installed in EMT.

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

28 3111 - 17

- B. Pathways shall be installed in EMT.
- C. Exposed EMT shall be painted red enamel.

3.4 CONNECTIONS

- A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 08 7100 "Door Hardware." Connect hardware and devices to fire-alarm system.
 - 1. Verify that hardware and devices are listed for use with installed fire-alarm system before making connections.
- B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 - 1. Alarm-initiating connection to smoke-control system (smoke management) at firefighters' smoke-control system panel.
 - 2. Alarm-initiating connection to stairwell and elevator-shaft pressurization systems.
 - 3. Smoke dampers in air ducts of designated HVAC duct systems.
 - 4. Magnetically held-open doors.
 - 5. Electronically locked doors and access gates.
 - 6. Alarm-initiating connection to elevator recall system and components.
 - 7. Alarm-initiating connection to activate emergency lighting control.
 - 8. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
 - 9. Supervisory connections at valve supervisory switches.
 - 10. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.
 - 11. Supervisory connections at elevator shunt-trip breaker.
 - 12. Data communication circuits for connection to building management system.
 - 13. Data communication circuits for connection to mass notification system.
 - 14. Supervisory connections at fire-extinguisher locations.
 - 15. Supervisory connections at fire-pump power failure including a dead-phase or phase-reversal condition.
 - 16. Supervisory connections at fire-pump engine control panel.

3.5 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."
- B. Install framed instructions in a location visible from fire-alarm control unit.

3.6 GROUNDING

- A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.
- B. Ground shielded cables at the control panel location only. Insulate shield at device location.

28 3111 - 18

3.7 FIELD QUALITY CONTROL

- A. Field tests shall be witnessed by authorities having jurisdiction and engineer.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
- D. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Visual Inspection: Conduct visual inspection prior to testing.
 - a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 - 2. System Testing: Comply with the "Test Methods" table in the "Testing" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
 - 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
 - 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.
 - 6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
- E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.
- F. Fire-alarm system will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.
- H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.
- I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.8 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include preventive maintenance, repair or replacement of worn or defective

17-13 OSU, College of Osteopathic Medicine at Cherokee Nation Childers Architect 07-26-19

28 3111 - 19

components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

- 1. Include visual inspections according to the "Visual Inspection Frequencies" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
- 2. Perform tests in the "Test Methods" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
- 3. Perform tests per the "Testing Frequencies" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

3.9 SOFTWARE SERVICE AGREEMENT

- A. Comply with UL 864.
- B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
- C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 - 1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

3.10 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION